Membrane-localized magnetic hyperthermia promotes intracellular delivery of cell-impermeant probes

被引:2
|
作者
Idiago-Lopez, Javier [1 ,2 ]
Ferreira, Daniela [3 ,4 ]
Asin, Laura [1 ,2 ]
Moros, Maria [1 ,2 ]
Armenia, Ilaria [1 ]
Grazu, Valeria [1 ,2 ]
Fernandes, Alexandra R. [3 ,4 ]
de la Fuente, Jesus M. [1 ,2 ]
Baptista, Pedro V. [3 ,4 ]
Fratila, Raluca M. [1 ,2 ,5 ]
机构
[1] Univ Zaragoza, Inst Nanociencia & Mat Aragon, CSIC, INMA, C Pedro Cerbuna 12, Zaragoza 50009, Spain
[2] Ctr Invest Biomed Red Bioingn Biomat & Nanomed CIB, Madrid, Spain
[3] NOVA Univ Lisbon, Inst Hlth & Bioecon, NOVA Sch Sci & Technol, Associate Lab i4HB, P-2819516 Caparica, Portugal
[4] NOVA Univ Lisbon, NOVA Sch Sci & Technol, Dept Life Sci, UCIBIO Appl Mol Biosci Unit, P-2819516 Caparica, Portugal
[5] Univ Zaragoza, Fac Ciencias, Dept Quim Organ, C Pedro Cerbuna 12, Zaragoza 50009, Spain
关键词
IRON-OXIDE NANOPARTICLES; HEAT-SHOCK; TARGETED DELIVERY; IN-VITRO; EXPRESSION; APOPTOSIS; PROTEIN; STRESS; FUNCTIONALIZATION; VIVO;
D O I
10.1039/d4nr01955e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes. Under an alternating magnetic field, magnetic nanoparticles (MNPs) immobilized on the cell membrane via bioorthogonal click chemistry act as nanoheaters and lead to the thermal disruption of the plasma membrane, which can be used for internalization of different types of molecules, such as small fluorescent probes and nucleic acids. Noteworthily, no cell death, oxidative stress and alterations of the cell cycle are detected after the thermal stimulus, although cells are able to sense and respond to the thermal stimulus through the expression of different types of heat shock proteins (HSPs). Finally, we demonstrate the utility of this approach for the transfection of cells with a small interference RNA (siRNA), revealing a similar efficacy to a standard transfection method based on the use of cationic lipid-based reagents (such as Lipofectamine), but with lower cell toxicity. These results open the possibility of developing new procedures for "opening and closing" cellular membranes with minimal disturbance of cellular integrity. This on-demand modification of cell membrane permeability could allow the direct intracellular delivery of biologically relevant (bio)molecules, drugs and nanomaterials, thus overcoming traditional endocytosis pathways and avoiding endosomal entrapment. In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes (fluorescent molecules and small interfering RNA), without affecting cell viability.
引用
收藏
页码:15176 / 15195
页数:20
相关论文
共 50 条
  • [21] Direct Intracellular Delivery of Cell-Impermeable Probes of Protein Glycosylation by Using Nanostraws
    Xu, Alexander M.
    Wang, Derek S.
    Shieh, Peyton
    Cao, Yuhong
    Melosh, Nicholas A.
    CHEMBIOCHEM, 2017, 18 (07) : 623 - 628
  • [22] Light-controllable cell-membrane disturbance for intracellular delivery
    Huo, Wenting
    Miki, Koji
    Mu, Huiying
    Osawa, Takashi
    Yamaguma, Harumi
    Kasahara, Yuuya
    Obika, Satoshi
    Kawaguchi, Yoshimasa
    Hirose, Hisaaki
    Futaki, Shiroh
    Miyazaki, Yusuke
    Shinoda, Wataru
    Akai, Shuji
    Ohe, Kouichi
    JOURNAL OF MATERIALS CHEMISTRY B, 2024, 12 (17) : 4138 - 4147
  • [23] Reply to the Comment on "Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia"
    Gu, Yuanyu
    Pinol, Rafael
    Moreno-Loshuertos, Raquel
    Brites, Carlos D. S.
    Zeler, Justyna
    Martinez, Abelardo
    Maurin-Pasturel, Guillaume
    Fernandez-Silva, Patricio
    Marco-Brualla, Joaquiïn
    Tellez, Pedro
    Cases, Rafael
    Belsue, Rafael Navarro
    Bonvin, Debora
    Carlos, Luis D.
    Millan, Angel
    ACS NANO, 2023, 17 (16) : 15219 - 15221
  • [24] Intracellular Delivery of Membrane Impermeable Photostable Fluorescent Probes into Living Cells for Super-Resolution Microscopy
    Ishitsuka, Yuji
    Teng, Kai Wen
    Ren, Pin
    Youn, Yeoan
    Deng, Xiang
    Ge, Pinghua
    Belmont, Andrew
    Selvin, Paul R.
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 21A - 21A
  • [25] Use of a membrane-localized green fluorescent protein allows simultaneous identification of transfected cells and cell cycle analysis by flow cytometry
    Kalejta, RF
    Shenk, T
    Beavis, AJ
    CYTOMETRY, 1997, 29 (04): : 286 - 291
  • [26] Ultrasound-induced cell permeabilisation and hyperthermia: Strategies for local delivery of compounds with intracellular mode of action
    Yudina, Anna
    Moonen, Chrit
    INTERNATIONAL JOURNAL OF HYPERTHERMIA, 2012, 28 (04) : 311 - 319
  • [27] Electrokinetic Intracellular Delivery Combined with Vibration-Assisted Cell Membrane Perforation
    Ozawa, Tatsuya
    Ito, Yasuharu
    Nagai, Moeto
    Kawashima, Takahiro
    Shibata, Takayuki
    2013 INTERNATIONAL SYMPOSIUM ON MICRO-NANOMECHATRONICS AND HUMAN SCIENCE (MHS), 2013,
  • [28] A perspective: Regulation of IgE receptor-mediated mast cell responses by a LAT-organized plasma membrane-localized signaling complex
    Rivera, J
    Arudchandran, R
    Gonzalez-Espinosa, C
    Manetz, TS
    Xirasagar, S
    INTERNATIONAL ARCHIVES OF ALLERGY AND IMMUNOLOGY, 2001, 124 (1-3) : 137 - 141
  • [29] A computational study of cell membrane damage and intracellular delivery in a cross-slot microchannel
    Lu, Ruixin
    Yu, Peng
    Sui, Yi
    SOFT MATTER, 2024, 20 (20) : 4057 - 4071
  • [30] Biocompatible mesoporous silica nanoparticles for cell type selective membrane transport and intracellular delivery
    Lin, Victor S. -Y.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240