A hybridizable discontinuous Galerkin method for the dual-porosity-Stokes problem

被引:0
作者
Cesmelioglu, Aycil [1 ]
Lee, Jeonghun J. [2 ]
Rhebergen, Sander [3 ]
Tabaku, Dorisa [1 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Baylor Univ, Dept Math, Waco, TX USA
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Hybridizable; Discontinuous Galerkin; Dual-porosity model; Stokes equations; Coupled problem; FINITE-ELEMENT-METHOD; COUPLING FLUID-FLOW;
D O I
10.1016/j.camwa.2024.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the dual -porosity -Stokes problem. This coupled problem describes the interaction between free flow in macrofractures/conduits, governed by the Stokes equations, and flow in microfractures/matrix, governed by a dual -porosity model. We prove that the HDG method is strongly conservative, well -posed, and give an a priori error analysis showing dependence on the problem parameters. Our theoretical findings are corroborated by numerical examples.
引用
收藏
页码:180 / 195
页数:16
相关论文
共 42 条
[21]  
Du S., 2019, An invitation to the theory of the hybridizable discontinuous Galerkin method
[22]  
Ern A., 2004, APPL MATH SCI, V159
[23]   A decoupled stabilized finite element method for the dual-porosity-Navier-Stokes fluid flow model arising in shale oil [J].
Gao, Liang ;
Li, Jian .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) :2357-2374
[24]   DG APPROXIMATION OF COUPLED NAVIER-STOKES AND DARCY EQUATIONS BY BEAVER-JOSEPH-SAFFMAN INTERFACE CONDITION [J].
Girault, Vivette ;
Riviere, Beatrice .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :2052-2089
[25]   Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method [J].
Hansbo, P ;
Larson, MG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (17-18) :1895-1908
[26]   A DUAL-POROSITY-STOKES MODEL AND FINITE ELEMENT METHOD FOR COUPLING DUAL-POROSITY FLOW AND FREE FLOW [J].
Hou, Jiangyong ;
Qiu, Meilan ;
He, Xiaoming ;
Guo, Chaohua ;
Wei, Mingzhen ;
Bai, Baojun .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05) :B710-B739
[27]   Inf-sup conditions for twofold saddle point problems [J].
Howell, Jason S. ;
Walkington, Noel J. .
NUMERISCHE MATHEMATIK, 2011, 118 (04) :663-693
[28]   A strongly conservative finite element method for the coupling of Stokes and Darcy flow [J].
Kanschat, G. ;
Riviere, B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (17) :5933-5943
[29]   Coupling fluid flow with porous media flow [J].
Layton, WJ ;
Schieweck, F ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 40 (06) :2195-2218
[30]   A second order partitioned method with grad-div stabilization for the non-stationary dual-porosity-Stokes model [J].
Li, Yi ;
Xue, Dandan ;
Rong, Yao ;
Qin, Yi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 124 :111-128