A hybridizable discontinuous Galerkin method for the dual-porosity-Stokes problem

被引:0
作者
Cesmelioglu, Aycil [1 ]
Lee, Jeonghun J. [2 ]
Rhebergen, Sander [3 ]
Tabaku, Dorisa [1 ]
机构
[1] Oakland Univ, Dept Math & Stat, Rochester, MI 48309 USA
[2] Baylor Univ, Dept Math, Waco, TX USA
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Hybridizable; Discontinuous Galerkin; Dual-porosity model; Stokes equations; Coupled problem; FINITE-ELEMENT-METHOD; COUPLING FLUID-FLOW;
D O I
10.1016/j.camwa.2024.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze a hybridizable discontinuous Galerkin (HDG) method for the dual -porosity -Stokes problem. This coupled problem describes the interaction between free flow in macrofractures/conduits, governed by the Stokes equations, and flow in microfractures/matrix, governed by a dual -porosity model. We prove that the HDG method is strongly conservative, well -posed, and give an a priori error analysis showing dependence on the problem parameters. Our theoretical findings are corroborated by numerical examples.
引用
收藏
页码:180 / 195
页数:16
相关论文
共 42 条
[1]   Mixed stabilized finite element method for the stationary Stokes-dual-permeability fluid flow model [J].
Al Mahbub, Md Abdullah ;
Shi, Feng ;
Nasu, Nasrin Jahan ;
Wang, Yongshuai ;
Zheng, Haibiao .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 358 (358)
[2]   Coupled and decoupled stabilized mixed finite element methods for nonstationary dual-porosity-Stokes fluid flow model [J].
Al Mahbub, Md Abdullah ;
He, Xiaoming ;
Nasu, Nasrin Jahan ;
Qiu, Changxin ;
Zheng, Haibiao .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (06) :803-833
[3]  
[Anonymous], 2008, ALL DAYS SPE UNC RES, DOI [10.2118/114880-MS, DOI 10.2118/114880-MS]
[4]   A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium [J].
Arbogast, Todd ;
Brunson, Dana S. .
COMPUTATIONAL GEOSCIENCES, 2007, 11 (03) :207-218
[5]   A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media [J].
Arbogast, Todd ;
Gomez, Mario San Martin .
COMPUTATIONAL GEOSCIENCES, 2009, 13 (03) :331-348
[6]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[7]   Numerical analysis of the Navier-Stokes/Darcy coupling [J].
Badea, Lori ;
Discacciati, Marco ;
Quarteroni, Alfio .
NUMERISCHE MATHEMATIK, 2010, 115 (02) :195-227
[8]   BOUNDARY CONDITIONS AT A NATURALLY PERMEABLE WALL [J].
BEAVERS, GS ;
JOSEPH, DD .
JOURNAL OF FLUID MECHANICS, 1967, 30 :197-&
[9]  
Boffi D., 2013, Springer Series in Computational Mechanics, V44, DOI [10.1007/978-3-642-36519-5, DOI 10.1007/978-3-642-36519-5]
[10]   A unified stabilized method for Stokes' and Darcy's equations [J].
Burman, Erik ;
Hansbo, Peter .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 198 (01) :35-51