Analysing the Performance and Interpretability of CNN-Based Architectures for Plant Nutrient Deficiency Identification

被引:3
作者
Mkhatshwa, Junior [1 ]
Kavu, Tatenda [1 ]
Daramola, Olawande [2 ]
机构
[1] Cape Peninsula Univ Technol, Dept Informat Technol, Dist Six Campus,POB 8000, Cape Town, South Africa
[2] Univ Pretoria, Dept Informat, POB 0028, Pretoria, South Africa
关键词
machine learning; deep learning; convolutional neural network; plant nutrient deficiency; explainable artificial intelligence; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.3390/computation12060113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Early detection of plant nutrient deficiency is crucial for agricultural productivity. This study investigated the performance and interpretability of Convolutional Neural Networks (CNNs) for this task. Using the rice and banana datasets, we compared three CNN architectures (CNN, VGG-16, Inception-V3). Inception-V3 achieved the highest accuracy (93% for rice and banana), but simpler models such as VGG-16 might be easier to understand. To address this trade-off, we employed Explainable AI (XAI) techniques (SHAP and Grad-CAM) to gain insights into model decision-making. This study emphasises the importance of both accuracy and interpretability in agricultural AI and demonstrates the value of XAI for building trust in these models.
引用
收藏
页数:17
相关论文
共 51 条
[1]   Artificial Intelligence-Based Drone System for Multiclass Plant Disease Detection Using an Improved Efficient Convolutional Neural Network [J].
Albattah, Waleed ;
Javed, Ali ;
Nawaz, Marriam ;
Masood, Momina ;
Albahli, Saleh .
FRONTIERS IN PLANT SCIENCE, 2022, 13
[2]   Identification of nutrient deficiency in plants by artificial intelligence [J].
Aleksandrov, Vladimir .
ACTA PHYSIOLOGIAE PLANTARUM, 2022, 44 (03)
[3]   Review of deep learning: concepts, CNN architectures, challenges, applications, future directions [J].
Alzubaidi, Laith ;
Zhang, Jinglan ;
Humaidi, Amjad J. ;
Al-Dujaili, Ayad ;
Duan, Ye ;
Al-Shamma, Omran ;
Santamaria, J. ;
Fadhel, Mohammed A. ;
Al-Amidie, Muthana ;
Farhan, Laith .
JOURNAL OF BIG DATA, 2021, 8 (01)
[4]   Performance evaluation of IoT-based service system for monitoring nutritional deficiencies in plants [J].
Andrianto, Heri ;
Suhardi, Ahmad ;
Faizal, Ahmad ;
Kurniawan, Novianto Budi ;
Aji, Dimas Praja Purwa .
INFORMATION PROCESSING IN AGRICULTURE, 2023, 10 (01) :52-70
[5]  
[Anonymous], 2009, Nutr. Manag. Modul, DOI DOI 10.1155/2015/756120
[6]  
Antwarg L, 2020, Arxiv, DOI arXiv:1903.02407
[7]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[8]  
Beura K., 2022, Souvenir, National Seminar on Recent Developments in Nutrient Management Strategies for Sustainable Agriculture: The Indian Context
[9]  
Canziani A., 2017, arXiv, DOI 10.48550/arXiv.1605.07678
[10]   Comparative performance of four CNN-based deep learning variants in detecting Hispa pest, two fungal diseases, and NPK deficiency symptoms of rice (Oryza sativa) [J].
Dey, Biplob ;
Ul Haque, Mohammed Masum ;
Khatun, Rahela ;
Ahmed, Romel .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 202