Carleman inequalities and unique continuation for the polyharmonic operators

被引:0
作者
Jeong, Eunhee [1 ,2 ]
Kwon, Yehyun [3 ]
Lee, Sanghyuk [4 ,5 ]
机构
[1] Jeonbuk Natl Univ, Dept Math Educ, Jeonju 54896, South Korea
[2] Jeonbuk Natl Univ, Inst Pure & Appl Math, Jeonju 54896, South Korea
[3] Changwon Natl Univ, Dept Math, Chang Won 51140, South Korea
[4] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[5] Seoul Natl Univ, RIM, Seoul 151747, South Korea
关键词
Carleman inequality; Unique continuation; Polyharmonic operator; BOCHNER-RIESZ OPERATORS; NEGATIVE INDEX; POWERS; LAPLACIAN; ORDER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a complete characterization of Lp - Lq Carleman estimates with weight ev<middle dot>x for the polyharmonic operators. Our result extends the Carleman inequalities for the Laplacian due to Kenig-Ruiz-Sogge. Consequently, we obtain new unique continuation properties of higher order Schr & ouml;dinger equations relaxing the integrability assumption on the solution spaces. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 120
页数:35
相关论文
共 50 条
[31]   UNIQUE CONTINUATION PROPERTY FOR A CLASS OF PARABOLIC DIFFERENTIAL INEQUALITIES IN A BOUNDED DOMAIN [J].
Zheng, Guojie ;
Xu, Dihong ;
Wang, Taige .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (02) :547-558
[32]   Strong unique continuation properties of generalized Baouendi-Grushin operators [J].
Garofalo, Nicola ;
Vassilev, Dimiter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (04) :643-663
[33]   Quantitative unique continuation for spectral subspaces of Schrodinger operators with singular potentials [J].
Dicke, Alexander ;
Rose, Christian ;
Seelmann, Albrecht ;
Tautenhahn, Martin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 369 :405-423
[34]   On two methods for quantitative unique continuation results for some nonlocal operators [J].
Garcia-Ferrero, Maria Angeles ;
Rueland, Angkana .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (11) :1512-1560
[35]   Unique continuation inequalities for Schrodinger equation on Riemannian symmetric spaces of noncompact type [J].
Bhowmik, Mithun ;
Ray, Swagato K. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (01) :331-343
[36]   Inverse boundary problems for polyharmonic operators with unbounded potentials [J].
Krupchyk, Katsiaryna ;
Uhlmann, Gunther .
JOURNAL OF SPECTRAL THEORY, 2016, 6 (01) :145-183
[37]   Unique continuation and lifting of spectral band edges of Schrodinger operators on unbounded domains [J].
Nakic, Ivica ;
Taufer, Matthias ;
Tautenhahn, Martin ;
Veselic, Ivan ;
Seelmann, Albrecht .
JOURNAL OF SPECTRAL THEORY, 2020, 10 (03) :843-885
[38]   Improved Rellich inequalities for the polyharmonic operator [J].
Barbatis, G. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (04) :1401-1422
[39]   Unique continuation properties for generalized Baouendi-Grushin operators with singular weights [J].
Jia Lin Wang ;
Peng Cheng Niu .
Acta Mathematica Sinica, English Series, 2011, 27 :1637-1644
[40]   Unique continuation properties for generalized Baouendi-Grushin operators with singular weights [J].
Wang, Jia Lin ;
Niu, Peng Cheng .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (08) :1637-1644