Riemann problem for a general variable coefficient Burgers equation with time-dependent damping

被引:0
|
作者
De la Cruz, Richard [1 ]
Lu, Yun-guang [2 ]
Wang, Xian-ting [3 ]
机构
[1] Univ Pedag & Tecnol Colombia, Sch Math & Stat, Tunja 150003, Colombia
[2] Zhejiang Univ Sci & Technol, Fac Sci, Hangzhou 310023, Peoples R China
[3] Wuxi Inst Technol, Dept Math, Wuxi 214121, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann problem; Variable coefficient Burgers equation; Time-dependent damping; Time-dependent viscous equation; Generalized Dafermos regularization; DELTA-SHOCK WAVES; HYPERBOLIC SYSTEMS; ASYMPTOTIC-BEHAVIOR; MODEL-EQUATIONS; VISCOSITY; EXISTENCE; TRANSFORMATION; DECAY;
D O I
10.1016/j.ijnonlinmec.2024.104703
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we study the Riemann problem for a general variable coefficient Burgers equation with timedependent damping. We use a nonlinear time -dependent viscosity equation with a similarity variable. Thus, when the viscosity goes to zero, we obtain Riemann solutions to the general variable coefficient Burgers equation with time -dependent damping. Moreover, we use the Lax-Friedrichs scheme to obtain numerical evidence of the Riemann solutions.
引用
收藏
页数:14
相关论文
共 50 条