Riemann problem for a general variable coefficient Burgers equation with time-dependent damping

被引:0
|
作者
De la Cruz, Richard [1 ]
Lu, Yun-guang [2 ]
Wang, Xian-ting [3 ]
机构
[1] Univ Pedag & Tecnol Colombia, Sch Math & Stat, Tunja 150003, Colombia
[2] Zhejiang Univ Sci & Technol, Fac Sci, Hangzhou 310023, Peoples R China
[3] Wuxi Inst Technol, Dept Math, Wuxi 214121, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann problem; Variable coefficient Burgers equation; Time-dependent damping; Time-dependent viscous equation; Generalized Dafermos regularization; DELTA-SHOCK WAVES; HYPERBOLIC SYSTEMS; ASYMPTOTIC-BEHAVIOR; MODEL-EQUATIONS; VISCOSITY; EXISTENCE; TRANSFORMATION; DECAY;
D O I
10.1016/j.ijnonlinmec.2024.104703
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we study the Riemann problem for a general variable coefficient Burgers equation with timedependent damping. We use a nonlinear time -dependent viscosity equation with a similarity variable. Thus, when the viscosity goes to zero, we obtain Riemann solutions to the general variable coefficient Burgers equation with time -dependent damping. Moreover, we use the Lax-Friedrichs scheme to obtain numerical evidence of the Riemann solutions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] ON THE UNIQUE RECOVERY OF TIME-DEPENDENT COEFFICIENT IN A HYPERBOLIC EQUATION FROM NONLOCAL DATA
    Azizbayov, Elvin, I
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (04): : 171 - 182
  • [22] Solvability Cauchy Problem for Time-Space Fractional Diffusion-Wave Equation with Variable Coefficient
    Turdiev, H. H.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (10) : 5281 - 5294
  • [23] BLOW-UP OF THE SOLUTION FOR SEMILINEAR DAMPED WAVE EQUATION WITH TIME-DEPENDENT DAMPING
    Lin, Jiayun
    Zhai, Jian
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2012, 14 (05)
  • [24] Life-Span of Classical Solutions to a Semilinear Wave Equation with Time-Dependent Damping
    Fei, Guo
    Jinling, Liang
    Changwang, Xiao
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2023, 36 (03): : 235 - 261
  • [25] Lattice Boltzmann model for a generalized Gardner equation with time-dependent variable coefficients
    Hu, Wen-Qiang
    Gao, Yi-Tian
    Lan, Zhong-Zhou
    Su, Chuan-Qi
    Feng, Yu-Jie
    APPLIED MATHEMATICAL MODELLING, 2017, 46 : 126 - 140
  • [26] Global smooth solutions for hyperbolic systems with time-dependent damping
    Liu, Cunming
    Sheng, Han
    Lai, Ning-An
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 247
  • [27] Convergence to nonlinear diffusion waves for solutions of p-system with time-dependent damping
    Li, Haitong
    Li, Jingyu
    Mei, Ming
    Zhang, Kaijun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (02) : 849 - 871
  • [28] The Riemann problem for a generalised Burgers equation with spatially decaying sound speed. II General qualitative theory and numerical analysis
    Meyer, John Christopher
    Needham, David John
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 85
  • [29] The Riemann problem for a generalized Burgers equation with spatially decaying sound speed. I Large-time asymptotics
    Needham, David J.
    Meyer, John C.
    Billingham, John
    Drysdale, Catherine
    STUDIES IN APPLIED MATHEMATICS, 2023, 150 (04) : 963 - 995
  • [30] Determining of a Space Dependent Coefficient of Fractional Diffusion Equation with the Generalized Riemann-Liouville Time Derivative
    Durdiev, D. K.
    Turdiev, H. H.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (02) : 648 - 662