Trusted Semi-Supervised Multi-View Classification With Contrastive Learning

被引:0
|
作者
Wang, Xiaoli [1 ]
Wang, Yongli [1 ]
Wang, Yupeng [1 ]
Huang, Anqi [1 ]
Liu, Jun [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210000, Peoples R China
[2] Singapore Univ Technol & Design, Singapore 48737, Singapore
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; multi-view classification; contrastive learning; uncertainty estimation; REPRESENTATION;
D O I
10.1109/TMM.2024.3379079
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semi-supervised multi-view learning is a remarkable but challenging task. Existing semi-supervised multi-view classification (SMVC) approaches mainly focus on performance improvement while ignoring decision reliability, which limits their deployment in safety-critical applications. Although several trusted multi-view classification methods are proposed recently, they rely on manual annotations. Therefore, this work emphasizes trusted multi-view classification learning under semi-supervised conditions. Different from existing SMVC methods, this work jointly models class probabilities and uncertainties based on evidential deep learning to formulate view-specific opinions. Moreover, unlike previous works that explore cross-view consistency in a single schema, this work proposes a multi-level consistency constraint. Specifically, we explore instance-level consistency on the view-specific representation space and category-level consistency on opinions from multiple views. Our proposed trusted graph-based contrastive loss nicely establishes the relationship between joint opinions and view-specific representations, which enables view-specific representations to enjoy a good manifold to improve classification performance. Overall, the proposed approach provides reliable and superior semi-supervised multi-view classification decisions. Extensive experiments demonstrate the effectiveness, reliability and robustness of the proposed model.
引用
收藏
页码:8268 / 8278
页数:11
相关论文
共 50 条
  • [1] SMGCL: Semi-supervised Multi-view Graph Contrastive Learning
    Zhou, Hui
    Gong, Maoguo
    Wang, Shanfeng
    Gao, Yuan
    Zhao, Zhongying
    KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [2] MMatch: Semi-Supervised Discriminative Representation Learning for Multi-View Classification
    Wang, Xiaoli
    Fu, Liyong
    Zhang, Yudong
    Wang, Yongli
    Li, Zechao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (09) : 6425 - 6436
  • [3] Multi-view semi-supervised learning for classification on dynamic networks
    Chen, Chuan
    Li, Yuzheng
    Qian, Hui
    Zheng, Zibin
    Hu, Yanqing
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [4] Semi-Supervised Learning for Multi-View Data Classification and Visualization
    Ziraki, Najmeh
    Bosaghzadeh, Alireza
    Dornaika, Fadi
    INFORMATION, 2024, 15 (07)
  • [5] Multi-view semi-supervised classification overview
    Jiang, Lekang
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [6] Multi-view classification with semi-supervised learning for SAR target recognition
    Zhang, Yukun
    Guo, Xiansheng
    Ren, Haohao
    Li, Lin
    SIGNAL PROCESSING, 2021, 183
  • [7] Semi-Supervised Structured Subspace Learning for Multi-View Clustering
    Qin, Yalan
    Wu, Hanzhou
    Zhang, Xinpeng
    Feng, Guorui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1 - 14
  • [8] A Multi-view Regularization Method for Semi-supervised Learning
    Wang, Jiao
    Luo, Siwei
    Li, Yan
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 444 - 449
  • [9] Semi-Supervised Multi-View Deep Discriminant Representation Learning
    Jia, Xiaodong
    Jing, Xiao-Yuan
    Zhu, Xiaoke
    Chen, Songcan
    Du, Bo
    Cai, Ziyun
    He, Zhenyu
    Yue, Dong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (07) : 2496 - 2509
  • [10] Inductive Multi-View Semi-supervised Learning with a Consensus Graph
    N. Ziraki
    A. Bosaghzadeh
    F. Dornaika
    Z. Ibrahim
    N. Barrena
    Cognitive Computation, 2023, 15 : 904 - 913