Spectral-Spatial Center-Aware Bottleneck Transformer for Hyperspectral Image Classification

被引:0
|
作者
Zhang, Meng [1 ,2 ]
Yang, Yi [1 ,2 ]
Zhang, Sixian [1 ,2 ]
Mi, Pengbo [1 ,2 ]
Han, Deqiang [3 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Aerosp, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Automat Sci & Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image classification; high spectral variability; limited labeled samples; feature correction layer; center-aware self-attention; ATTENTION NETWORK; RESIDUAL NETWORK; FRAMEWORK;
D O I
10.3390/rs16122152
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral image (HSI) contains abundant spectral-spatial information, which is widely used in many fields. HSI classification is a fundamental and important task, which aims to assign each pixel a specific class label. However, the high spectral variability and the limited labeled samples create challenges for HSI classification, which results in poor data separability and makes it difficult to learn highly discriminative semantic features. In order to address the above problems, a novel spectral-spatial center-aware bottleneck Transformer is proposed. First, the highly relevant spectral information and the complementary spatial information at different scales are integrated to reduce the impact caused by the high spectral variability and enhance the HSI's separability. Then, the feature correction layer is designed to model the cross-channel interactions, thereby promoting the effective cooperation between different channels to enhance overall feature representation capability. Finally, the center-aware self-attention is constructed to model the spatial long-range interactions and focus more on the neighboring pixels that have relatively consistent spectral-spatial properties with the central pixel. Experimental results on the common datasets show that compared with the state-of-the-art classification methods, S2CABT has the better classification performance and robustness, which achieves a good compromise between the complexity and the performance.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song, Liangliang
    Feng, Zhixi
    Yang, Shuyuan
    Zhang, Xinyu
    Jiao, Licheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8589 - 8601
  • [2] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [3] A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [4] Spectral-Spatial Morphological Attention Transformer for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Deria, Ankur
    Shah, Chiranjibi
    Haut, Juan M.
    Du, Qian
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] MultiScale spectral-spatial convolutional transformer for hyperspectral image classification
    Gong, Zhiqiang
    Zhou, Xian
    Yao, Wen
    IET IMAGE PROCESSING, 2024, 18 (13) : 4328 - 4340
  • [6] WaveFormer: Spectral-Spatial Wavelet Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Ghous, Usman
    Usama, Muhammad
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [7] A multi-range spectral-spatial transformer for hyperspectral image classification
    Zhang, Lan
    Wang, Yang
    Yang, Linzi
    Chen, Jianfeng
    Liu, Zijie
    Wang, Jihong
    Bian, Lifeng
    Yang, Chen
    INFRARED PHYSICS & TECHNOLOGY, 2023, 135
  • [8] Adaptive Learnable Spectral-Spatial Fusion Transformer for Hyperspectral Image Classification
    Wang, Minhui
    Sun, Yaxiu
    Xiang, Jianhong
    Sun, Rui
    Zhong, Yu
    REMOTE SENSING, 2024, 16 (11)
  • [9] SSATNet: Spectral-spatial attention transformer for hyperspectral corn image classification
    Wang, Bin
    Chen, Gongchao
    Wen, Juan
    Li, Linfang
    Jin, Songlin
    Li, Yan
    Zhou, Ling
    Zhang, Weidong
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [10] SPECTRAL-SPATIAL TRANSFORMER FOR HYPERSPECTRAL IMAGE SHARPENING
    Chen, Lihui
    Vivone, Gemine
    Qin, Jiayi
    Chanussot, Jocelyn
    Yang, Xiaomin
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1452 - 1455