Norm bounds on Eisenstein series

被引:0
作者
Kelmer, Dubi [1 ]
Kontorovich, Alex [2 ]
Lutsko, Christopher [3 ]
机构
[1] Boston Coll, Dept Math, Boston, MA USA
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08854 USA
[3] Univ Zurich, Inst Math, Zurich, Switzerland
关键词
Sup norms; Eisenstein series; Epstein zeta function; SUP-NORM; EIGENFUNCTIONS;
D O I
10.1142/S1793042124501021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the sup-norm bound (both individually and on average) for Eisenstein series on certain arithmetic hyperbolic orbifolds producing sharp exponents for the modular surface and Picard 3-fold. The methods involve bounds for Epstein zeta functions, and counting restricted values of indefinite quadratic forms at integer points.
引用
收藏
页码:2083 / 2098
页数:16
相关论文
共 21 条
[1]   On sup-norm bounds part II: GL(2) Eisenstein series [J].
Assing, Edgar .
FORUM MATHEMATICUM, 2019, 31 (04) :971-1006
[2]   WAVE-EQUATION ON A COMPACT RIEMANNIAN MANIFOLD WITHOUT CONJUGATE POINTS [J].
BERARD, PH .
MATHEMATISCHE ZEITSCHRIFT, 1977, 155 (03) :249-276
[3]   EPSTEIN ZETA-FUNCTIONS, SUBCONVEXITY, AND THE PURITY CONJECTURE [J].
Blomer, Valentin .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (02) :581-596
[4]   BOUNDS FOR EIGENFORMS ON ARITHMETIC HYPERBOLIC 3-MANIFOLDS [J].
Blomer, Valentin ;
Harcos, Gergely ;
Milicevic, Djordje .
DUKE MATHEMATICAL JOURNAL, 2016, 165 (04) :625-659
[5]   Effective counting for discrete lattice orbits in the plane via Eisenstein series [J].
Burrin, Claire ;
Nevo, Amos ;
Ruhr, Rene ;
Weiss, Barak .
ENSEIGNEMENT MATHEMATIQUE, 2020, 66 (03) :259-304
[6]  
Cohen P., 1980, NOTE SELBERG TRACE F
[7]   Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture [J].
Eskin, A ;
Margulis, G ;
Mozes, S .
ANNALS OF MATHEMATICS, 1998, 147 (01) :93-141
[8]  
HEJHAL D, 1976, LECT NOTES MATH, V548
[9]   Sup-Norm and Nodal Domains of Dihedral Maass Forms [J].
Huang, Bingrong .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) :1261-1282
[10]   L(INFINITY) NORMS OF EIGENFUNCTIONS OF ARITHMETIC SURFACES [J].
IWANIEC, H ;
SARNAK, P .
ANNALS OF MATHEMATICS, 1995, 141 (02) :301-320