Research on Filtering Algorithm of Vehicle Dynamic Weighing Signal

被引:0
作者
Xiong, Lingcong [1 ]
Zhang, Tieyi [1 ]
Yuan, Anlu [1 ]
Zhang, Zhipeng [1 ]
机构
[1] Guangxi Univ, Sch Mech Engn, Nanning 530004, Peoples R China
来源
WORLD ELECTRIC VEHICLE JOURNAL | 2024年 / 15卷 / 06期
关键词
dynamic weighing; filtering algorithm; noise signals; axle weight signal; moving average; wavelet transform; variational modal decomposition;
D O I
10.3390/wevj15060254
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study analyzes the advantages and disadvantages of filtering algorithms for dynamic weighing signals. Highway road surface has road surface unevenness and other influencing factors. The body vibration of the vehicle driving process produces a certain amount of interference signals collected by the load cell to form noise signals. In addition, piezoelectric sensors and amplification circuits introduce a large amount of electrical noise. These noise signals are non-smooth, nonlinear, and have other characteristics. We study the filtering effects of moving average (MA), wavelet transform (WT), and variational mode decomposition (VMD) filtering algorithms on axle weight signals and evaluate the performance of the filtering algorithms through the Root Mean Square Error (RMSE), signal-to-noise ratio (SNR), and Normalized Correlation Coefficient (NCC). The comprehensive analysis shows that the variational modal decomposition filtering algorithm is more advantageous for axial weight signal processing. The design of the axle weight signal noise filtering algorithm is of great significance for improving the accuracy of the overall dynamic weighing system of the vehicle.
引用
收藏
页数:14
相关论文
共 34 条
[1]   Damage detection in structural systems utilizing artificial neural networks and proper orthogonal decomposition [J].
Azam, Saeed Eftekhar ;
Rageh, Ahmed ;
Linzell, Daniel .
STRUCTURAL CONTROL & HEALTH MONITORING, 2019, 26 (02)
[2]  
Carr B.W.J., 1971, Ky. Transp. Cent. Res. Rep, P1147, DOI [10.13023/KTC.RR.1971.307, DOI 10.13023/KTC.RR.1971.307]
[3]   Maximum correntropy Kalman filter [J].
Chen, Badong ;
Liu, Xi ;
Zhao, Haiquan ;
Principe, Jose C. .
AUTOMATICA, 2017, 76 :70-77
[4]  
Chen J., 2022, Xian Univ. Technol, DOI [10.27398/d.cnki.gxalu.2022.000396, DOI 10.27398/D.CNKI.GXALU.2022.000396]
[5]  
Chen X.Y., 2023, Autom. Instrum, V38, P58, DOI [10.19557/j.cnki.1001-9944.2023.02.014, DOI 10.19557/J.CNKI.1001-9944.2023.02.014]
[6]   Design of a capacitive flexible weighing sensor for vehicle WIM system [J].
Cheng, Lu ;
Zhang, Hongjian ;
Li, Qing .
SENSORS, 2007, 7 (08) :1530-1544
[7]  
[邓露 Deng Lu], 2022, [中国公路学报, China Journal of Highway and Transport], V35, P108
[8]   Variational Mode Decomposition [J].
Dragomiretskiy, Konstantin ;
Zosso, Dominique .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (03) :531-544
[9]  
Du Chang-dong, 2018, Journal of Highway and Transportation Research and Development (English Edition), V12, P105
[10]   Performance assessment of discrete wavelet transform for de-noising of FBG sensors signals embedded in asphalt pavement [J].
Golmohammadi, Ali ;
Hasheminejad, Navid ;
Hernando, David ;
Vanlanduit, Steve ;
Van den Bergh, Wim .
OPTICAL FIBER TECHNOLOGY, 2024, 82