Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials

被引:23
作者
Dong, Haikuan [1 ]
Shi, Yongbo [1 ]
Ying, Penghua [2 ]
Xu, Ke [3 ,4 ]
Liang, Ting [3 ,4 ]
Wang, Yanzhou [5 ]
Zeng, Zezhu [6 ]
Wu, Xin [7 ]
Zhou, Wenjiang [8 ,9 ]
Xiong, Shiyun [10 ]
Chen, Shunda [11 ]
Fan, Zheyong [1 ]
机构
[1] Bohai Univ, Coll Phys Sci & Technol, Jinzhou, Peoples R China
[2] Tel Aviv Univ, Sch Chem, Dept Phys Chem, IL-6997801 Tel Aviv, Israel
[3] Chinese Univ Hong Kong, Dept Elect Engn & Mat Sci, Shatin, Hong Kong 999077, Peoples R China
[4] Chinese Univ Hong Kong, Technol Res Ctr, Shatin, Hong Kong 999077, Peoples R China
[5] Aalto Univ, QTF Ctr Excellence, Dept Appl Phys, MSP Grp, FI-00076 Espoo, Finland
[6] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[7] South China Univ Technol, Sch Civil Engn & Transportat, Dept Engn Mech, Guangzhou 510640, Guangdong, Peoples R China
[8] Peking Univ, Dept Energy & Resources Engn, Beijing 100871, Peoples R China
[9] Great Bay Univ, Sch Adv Engn, Dongguan 523000, Peoples R China
[10] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou Key Lab Low Dimens Mat & Energy Storage, Guangzhou 510006, Peoples R China
[11] George Washington Univ, Dept Civil & Environm Engn, Washington, DC 20052 USA
基金
中国国家自然科学基金;
关键词
LATTICE THERMAL-CONDUCTIVITY; INTERATOMIC POTENTIALS; SILICON; EQUILIBRIUM; MONOLAYERS; INSIGHTS; FLOW;
D O I
10.1063/5.0200833
中图分类号
O59 [应用物理学];
学科分类号
摘要
Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies.
引用
收藏
页数:23
相关论文
共 199 条
  • [1] [Anonymous], 2024, Github Repository
  • [2] An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
    Artrith, Nongnuch
    Urban, Alexander
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2016, 114 : 135 - 150
  • [3] Thermophysical properties of FLiBe using moment tensor potentials
    Attarian, Siamak
    Morgan, Dane
    Szlufarska, Izabela
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2022, 368
  • [4] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [5] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [6] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [7] Transition from electron-dominated to phonon-driven thermal transport in tungsten under extreme pressures
    Bhatt, Niraj
    Karna, Pravin
    Thakur, Sandip
    Giri, Ashutosh
    [J]. PHYSICAL REVIEW MATERIALS, 2023, 7 (11)
  • [8] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [9] Heat Flux for Many-Body Interactions: Corrections to LAMMPS
    Boone, Paul
    Babaei, Hasan
    Wilmer, Christopher E.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) : 5579 - 5587
  • [10] Atomistic simulations of thermal conductivity in GeTe nanowires
    Bosoni, E.
    Campi, D.
    Donadio, D.
    Sosso, G. C.
    Behler, J.
    Bernasconi, M.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (05)