A Scalable Deep Learning Framework for Dynamic CSI Feedback With Variable Antenna Port Numbers

被引:2
|
作者
Lin, Yu-Chien [1 ]
Lee, Ta-Sung [2 ]
Ding, Zhi [1 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
[2] Natl Yang Ming Chiao Tung Univ, Inst Commun Engn, Hsinchu 30010, Taiwan
基金
美国国家科学基金会;
关键词
CSI feedback; scalability; dynamic architecture; massive MIMO; deep learning; COMPRESSION; NETWORK;
D O I
10.1109/TWC.2023.3305546
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Transmitter-side channel state information (CSI) is vital for large MIMO downlink systems to achieve high spectrum and energy efficiency. Existing deep learning architectures for downlink CSI feedback and recovery show promising improvement of UE feedback efficiency and eNB/gNB CSI recovery accuracy. One notable weakness of current deep learning architectures lies in their rigidity when customized and trained according to a preset number of antenna ports for a given compression ratio. To develop flexible learning models for different antenna port numbers and compression levels, this work proposes a novel scalable deep learning framework that accommodates different numbers of antenna ports and achieves dynamic feedback compression. It further reduces computation and memory complexity by allowing UEs to feedback segmented DL CSI. We showcase a multi-rate successive convolution encoder with under 500 parameters. Furthermore, based on the multi-rate architecture, we propose to optimize feedback efficiency by selecting segment-dependent compression levels. Test results demonstrate superior performance, good scalability, and high efficiency for both indoor and outdoor channels.
引用
收藏
页码:3102 / 3116
页数:15
相关论文
共 50 条
  • [31] A Novel Quantization Method for Deep Learning-Based Massive MIMO CSI Feedback
    Chen, Tong
    Guo, Jiajia
    Jin, Shi
    Wen, Chao-Kai
    Li, Geoffrey Ye
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [32] A Novel Compression CSI Feedback based on Deep Learning for FDD Massive MIMO Systems
    Wang, Yuting
    Zhang, Yibin
    Sun, Jinlong
    Gui, Guan
    Ohtsuki, Tomoaki
    Adachi, Fumiyuki
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [33] Deep Learning and Compressive Sensing-Based CSI Feedback in FDD Massive MIMO Systems
    Liang, Peizhe
    Fan, Jiancun
    Shen, Wenhan
    Qin, Zhijin
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 9217 - 9222
  • [34] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [35] Deep Learning for CSI Feedback Based on Superimposed Coding
    Qing, Chaojin
    Cai, Bin
    Yang, Qingyao
    Wang, Jiafan
    Huang, Chuan
    IEEE ACCESS, 2019, 7 : 93723 - 93733
  • [36] A Manifold Learning-Based CSI Feedback Framework for FDD Massive MIMO
    Cao, Yandi
    Yin, Haifan
    Qin, Ziao
    Li, Weidong
    Wu, Weimin
    Debbah, Merouane
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (03) : 1833 - 1846
  • [37] CSI Feedback Method Based on Deep Learning for FDD Massive MIMO Systems
    Liao Y.
    Yao H.-M.
    Hua Y.-X.
    Zhao Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (06): : 1182 - 1189
  • [38] Deep Learning-Based CSI Feedback Approach for Time-Varying Massive MIMO Channels
    Wang, Tianqi
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (02) : 416 - 419
  • [39] Exploiting Partial FDD Reciprocity for Beam-Based Pilot Precoding and CSI Feedback in Deep Learning
    Lin, Yu-Chien
    Lee, Ta-Sung
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (02) : 1474 - 1488
  • [40] Deep Learning-Based Cooperative CSI Feedback via Multiple Receiving Antennas in Massive MIMO
    Liang, Xin
    Shen, Jinghan
    Chang, Haoran
    Gu, Xinyu
    Zhang, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1373 - 1378