Multi-view Stable Feature Selection with Adaptive Optimization of View Weights

被引:1
作者
Cui, Menghan [1 ]
Wang, Kaixiang [1 ]
Ding, Xiaojian [1 ]
Xu, Zihan [1 ]
Wang, Xin [1 ]
Shi, Pengcheng [1 ]
机构
[1] Nanjing Univ Finance & Econ, Coll Informat Engn, Nanjing 210023, Peoples R China
关键词
Multi-view; Feature selection; View weights; Adaptive optimization; UNSUPERVISED FEATURE-SELECTION; SIMILARITY; GRAPH;
D O I
10.1016/j.knosys.2024.111970
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The feature selection problem in multi -view data has garnered widespread attention and research in recent years, leading to the development of numerous feature selection algorithms tailored for multi -view data. However, existing methods often focus solely on known data, overlooking the potential distribution information of unknown data. Additionally, these methods inevitably introduce a large number of parameters to fully utilize the information from different views in multi -view data, thereby reducing the efficiency of model training. To address these issues comprehensively, we propose a novel framework called Multi -view Stable Feature Selection with Adaptive Optimization of View Weights (MvSFS-AOW). Specifically, the framework first employs the Multi -view Stable Feature Selection (MvSFS) algorithm to evaluate and select features from different views. Subsequently, it dynamically adjusts view weights using the Adaptive Optimization of View Weights (AOW) algorithm to achieve optimal generalization performance. By incorporating unknown data into the training process, we enhance the reliability of the framework in practical applications. Furthermore, our framework achieves competitive performance without requiring extensive parameter tuning. Experimental results demonstrate that the proposed framework achieves promising classification and clustering performance on multiple datasets, surpassing other state-of-the-art algorithms. Code for this paper available on: https: //github.com/boredcui/MvSFS-AOW.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Multi-view adaptive semi-supervised feature selection with the self-paced learning
    Shi, Caijuan
    Gu, Zhibin
    Duan, Changyu
    Tian, Qi
    SIGNAL PROCESSING, 2020, 168
  • [22] MvFS: Multi-view Feature Selection for Recommender System
    Lee, Youngjune
    Jeong, Yeongjong
    Park, Keunchan
    Kang, SeongKu
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4048 - 4052
  • [23] Active multi-view object recognition: A unifying view on online feature selection and view planning
    Potthast, Christian
    Breitenmoser, Andreas
    Sha, Fei
    Sukhatme, Gaurav S.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 84 : 31 - 47
  • [24] Discriminative Feature Selection for Multi-View Cross-Domain Learning
    Fang, Zheng
    Zhang, Zhongfei
    PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 1321 - 1330
  • [25] Structural regularization based discriminative multi-view unsupervised feature selection
    Zhou, Shixuan
    Song, Peng
    Yu, Yanwei
    Zheng, Wenming
    KNOWLEDGE-BASED SYSTEMS, 2023, 272
  • [26] Cluster structure preserving unsupervised feature selection for multi-view tasks
    Shi, Hong
    Li, Yin
    Han, Yahong
    Hu, Qinghua
    NEUROCOMPUTING, 2016, 175 : 686 - 697
  • [27] Manifold regularized multi-view feature selection for social image annotation
    Li, Yangxi
    Shi, Xin
    Du, Cuilan
    Liu, Yang
    Wen, Yonggang
    NEUROCOMPUTING, 2016, 204 : 135 - 141
  • [28] Integrative Generalized Convex Clustering Optimization and Feature Selection for Mixed Multi-View Data
    Wang, Minjie
    Allen, Genevera, I
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [29] Incomplete multi-view feature selection with adaptive consensus graph constraint for Parkinson's disease diagnosis
    Huang, Zhongwei
    Li, Jianqiang
    Wan, Jun
    Chen, Jianxia
    Yang, Zhi
    Shi, Ming
    Zhou, Ran
    Gan, Haitao
    APPLIED SOFT COMPUTING, 2025, 170
  • [30] Discriminative multi-task multi-view feature selection and fusion for multimedia analysis
    Yang, Ziwei
    Wang, Huiyun
    Han, Yahong
    Zhu, Xianglei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (03) : 3431 - 3453