Birational equivalence of the Zassenhaus varieties for basic classical Lie superalgebras and their purely-even reductive Lie subalgebras in odd characteristic

被引:0
作者
Shu, Bin [2 ,3 ]
Zheng, Lisun [1 ]
Ren, Ye [4 ]
机构
[1] Shanghai Inst Technol, Coll Sci, 100 Haiquan Rd, Shanghai 201418, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Key Lab Math & Engn Applicat, Minist Educ, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
[3] East China Normal Univ, Shanghai Key Lab PMMP, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Sch Math Sci, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Basic classical Lie superalgegbras; centers of universal enveloping algebras; maximal spectrums; Zassenhaus varieties; REPRESENTATIONS; ALGEBRAS; SUPERGROUPS; CENTERS;
D O I
10.1515/forum-2023-0326
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g=g(0)circle plus g(1) be a basic classical Lie superalgebra over an algebraically closed field k of characteristic p>2 . Denote by Z the center of the universal enveloping algebra U(g) . Then Z turns out to be finitely-generated purely-even commutative algebra without nonzero divisors. In this paper, we demonstrate that the fraction Frac(Z) is isomorphic to Frac(Z) for the center Z of U(g(0)) . Consequently, both Zassenhaus varieties for g and g(0) are birationally equivalent via a subalgebra Z subset of Z , and Spec(Z) is rational under the standard hypotheses.
引用
收藏
页码:851 / 870
页数:20
相关论文
共 1 条