Improving multiple sclerosis lesion segmentation across clinical sites: A federated learning approach with noise-resilient training

被引:2
作者
Bai, Lei [1 ,2 ,9 ]
Wang, Dongang [1 ,3 ]
Wang, Hengrui [3 ]
Barnett, Michael [1 ,3 ,4 ]
Cabezas, Mariano [1 ]
Cai, Weidong [1 ,5 ]
Calamante, Fernando [1 ,6 ,7 ]
Kyle, Kain [1 ,3 ]
Liu, Dongnan [1 ,5 ]
Ly, Linda [3 ]
Nguyen, Aria [3 ,10 ]
Shieh, Chun-Chien [3 ]
Sullivan, Ryan [6 ,8 ]
Zhan, Geng [1 ,3 ]
Ouyang, Wanli [2 ,10 ]
Wang, Chenyu [1 ,3 ,9 ]
机构
[1] Univ Sydney, Brain & Mind Ctr, Camperdown, NSW 2050, Australia
[2] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[3] Sydney Neuroimaging Anal Ctr, 94 Mallett St, Sydney, NSW 2050, Australia
[4] Royal Prince Alfred Hosp, Camperdown, NSW 2050, Australia
[5] Univ Sydney, Sch Comp Sci, Sydney, NSW 2006, Australia
[6] Univ Sydney, Sch Biomed Engn, Sydney, NSW 2006, Australia
[7] Univ Sydney, Sydney Imaging, Sydney, NSW 2006, Australia
[8] Australian Imaging Serv, Sydney, NSW 2006, Australia
[9] Shanghai AI Lab, Shanghai, Peoples R China
[10] Univ Sydney, Sch Phys, Sydney, Australia
基金
澳大利亚研究理事会;
关键词
Multiple sclerosis; Lesion segmentation; Federated learning; Noisy labels; Label correction; AUTOMATIC SEGMENTATION; ROBUST; REGISTRATION; NETWORKS; ACCURATE; IMAGES;
D O I
10.1016/j.artmed.2024.102872
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurately measuring the evolution of Multiple Sclerosis (MS) with magnetic resonance imaging (MRI) critically informs understanding of disease progression and helps to direct therapeutic strategy. Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area. Obtaining sufficient data from a single clinical site is challenging and does not address the heterogeneous need for model robustness. Conversely, the collection of data from multiple sites introduces data privacy concerns and potential label noise due to varying annotation standards. To address this dilemma, we explore the use of the federated learning framework while considering label noise. Our approach enables collaboration among multiple clinical sites without compromising data privacy under a federated learning paradigm that incorporates a noise-robust training strategy based on label correction. Specifically, we introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions, enabling the correction of false annotations based on prediction confidence. We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites, enhancing the reliability of the correction process. Extensive experiments conducted on two multi-site datasets demonstrate the effectiveness and robustness of our proposed methods, indicating their potential for clinical applications in multi-site collaborations to train better deep learning models with lower cost in data collection and annotation.
引用
收藏
页数:11
相关论文
共 39 条
  • [1] Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation
    Brosch, Tom
    Tang, Lisa Y. W.
    Yoo, Youngjin
    Li, David K. B.
    Traboulsee, Anthony
    Tam, Roger
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1229 - 1239
  • [2] Longitudinal multiple sclerosis lesion segmentation: Resource and challenge
    Carass, Aaron
    Roy, Snehashis
    Jog, Amod
    Cuzzocreo, Jennifer L.
    Magrath, Elizabeth
    Gherman, Adrian
    Button, Julia
    Nguyen, James
    Prados, Ferran
    Sudre, Carole H.
    Cardoso, Manuel Jorge
    Cawley, Niamh
    Ciccarelli, Olga
    Wheeler-Kingshott, Claudia A. M.
    Ourselin, Sebastien
    Catanese, Laurence
    Deshpande, Hrishikesh
    Maurel, Pierre
    Commowick, Olivier
    Barillot, Christian
    Tomas-Fernandez, Xavier
    Warfield, Simon K.
    Vaidya, Suthirth
    Chunduru, Abhijith
    Muthuganapathy, Ramanathan
    Krishnamurthi, Ganapathy
    Jesson, Andrew
    Arbel, Tal
    Maier, Oskar
    Handeles, Heinz
    Iheme, Leonardo O.
    Unay, Devrim
    Jain, Saurabh
    Sima, Diana M.
    Smeets, Dirk
    Ghafoorian, Mohsen
    Platel, Bram
    Birenbaum, Ariel
    Greenspan, Hayit
    Bazin, Pierre-Louis
    Calabresi, Peter A.
    Crainiceanu, Ciprian M.
    Ellingsen, Lotta M.
    Reich, Daniel S.
    Prince, Jerry L.
    Pham, Dzung L.
    [J]. NEUROIMAGE, 2017, 148 : 77 - 102
  • [3] Multiple sclerosis lesions segmentation from multiple experts: The MICCAI 2016 challenge dataset
    Commowick, Olivier
    Kain, Michael
    Casey, Romain
    Ameli, Roxana
    Ferre, Jean-Christophe
    Kerbrat, Anne
    Tourdias, Thomas
    Cervenansky, Frederic
    Camarasu-Pop, Sorina
    Glatard, Tristan
    Vukusic, Sandra
    Edan, Gilles
    Barillot, Christian
    Dojat, Michel
    Cotton, Francois
    [J]. NEUROIMAGE, 2021, 244
  • [4] Flores Mona, 2021, Res Sq, DOI 10.21203/rs.3.rs-126892/v1
  • [5] Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging
    Garcia-Lorenzo, Daniel
    Francis, Simon
    Narayanan, Sridar
    Arnold, Douglas L.
    Collins, D. Louis
    [J]. MEDICAL IMAGE ANALYSIS, 2013, 17 (01) : 1 - 18
  • [6] Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin
    Ghafoorian, Mohsen
    Karssemeijer, Nico
    Heskes, Tom
    Bergkamp, Mayra
    Wissink, Joost
    Obels, Jiri
    Keizer, Karlijn
    de Leeuw, Frank-Erik
    van Ginneken, Bram
    Marchiori, Elena
    Platel, Bram
    [J]. NEUROIMAGE-CLINICAL, 2017, 14 : 391 - 399
  • [7] Grabner G, 2006, LECT NOTES COMPUT SC, V4191, P58
  • [8] Accurate and robust brain image alignment using boundary-based registration
    Greve, Douglas N.
    Fischl, Bruce
    [J]. NEUROIMAGE, 2009, 48 (01) : 63 - 72
  • [9] Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
    Han, Bo
    Yao, Quanming
    Yu, Xingrui
    Niu, Gang
    Xu, Miao
    Hu, Weihua
    Tsang, Ivor W.
    Sugiyama, Masashi
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [10] Deep Self-Learning From Noisy Labels
    Han, Jiangfan
    Luo, Ping
    Wang, Xiaogang
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5137 - 5146