Physical Zero-Knowledge Proof Protocols for Topswops and Botdrops

被引:0
作者
Komano, Yuichi [1 ]
Mizuki, Takaaki [2 ]
机构
[1] Chiba Inst Technol, 2-17-1 Tsudanuma, Narashino, Chiba 2750016, Japan
[2] Tohoku Univ, 6-3 Aramaki Aza Aoba,Aoba Ku, Sendai, Miyagi 9808578, Japan
基金
日本学术振兴会;
关键词
Zero-knowledge proof; Card-based cryptography; Topswops; CRYPTOGRAPHIC PROTOCOLS; CARD; SECURE; COMPUTATION;
D O I
10.1007/s00354-024-00272-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Suppose that a sequence of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} cards, numbered 1 to n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document}, is placed face up in random order. Let k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} be the number on the first card in the sequence. Then take the first k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} cards from the sequence, rearrange that subsequence of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} cards in reverse order, and return them to the original sequence. Repeat this prefix reversal until the number on the first card in the sequence becomes 1. This is a one-player card game called Topswops. The computational complexity of Topswops has not been thoroughly investigated. For example, letting f(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{f}}({\varvec{n}})$$\end{document} denote the maximum number of prefix reversals for Topswops with n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} cards, values of f(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{f}}({\varvec{n}})$$\end{document} for n >= 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}\ge 20$$\end{document} remain unknown. In general, there is no known efficient algorithm for finding an initial sequence of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} cards that requires exactly & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} prefix reversals for any integers n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} and & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\ell }}$$\end{document}. In this paper, using a deck of cards, we propose a physical zero-knowledge proof protocol that allows a prover to convince a verifier that the prover knows an initial sequence of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} cards that requires & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\ell }}$$\end{document} prefix reversals without leaking knowledge of that sequence. We also deal with Botdrops, a variant of Topswops.
引用
收藏
页码:399 / 428
页数:30
相关论文
共 76 条
[71]   A single shuffle is enough for secure card-based computation of any Boolean circuit [J].
Shinagawa, Kazumasa ;
Nuida, Koji .
DISCRETE APPLIED MATHEMATICS, 2021, 289 :248-261
[72]   Secure Computation Protocols Using Polarizing Cards [J].
Shinagawa, Kazumasa ;
Mizuki, Takaaki ;
Schuldt, Jacob C. N. ;
Nuida, Koji ;
Kanayama, Naoki ;
Nishide, Takashi ;
Hanaoka, Goichiro ;
Okamoto, Eiji .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (06) :1122-1131
[73]   A classification proof for commutative three-element semigroups with local AND structure and its application to card-based protocols [J].
Suga, Yuji .
2022 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN, IEEE ICCE-TW 2022, 2022, :171-172
[74]   Two UNO Decks Efficiently Perform Zero-Knowledge Proof for Sudoku [J].
Tanaka, Kodai ;
Mizuki, Takaaki .
FUNDAMENTALS OF COMPUTATION THEORY, FCT 2023, 2023, 14292 :406-420
[75]  
Tozawa Kazunari, 2023, Unconventional Computation and Natural Computation: 20th International Conference, UCNC 2023, Proceedings. Lecture Notes in Computer Science (14003), P171, DOI 10.1007/978-3-031-34034-5_12
[76]   Upper Bounds on the Number of Shuffles for Two-Helping-Card Multi-Input AND Protocols [J].
Yoshida, Takuto ;
Tanaka, Kodai ;
Nakabayashi, Keisuke ;
Chida, Eikoh ;
Mizuki, Takaaki .
CRYPTOLOGY AND NETWORK SECURITY, CANS 2023, 2023, 14342 :211-231