Physical Zero-Knowledge Proof Protocols for Topswops and Botdrops

被引:0
作者
Komano, Yuichi [1 ]
Mizuki, Takaaki [2 ]
机构
[1] Chiba Inst Technol, 2-17-1 Tsudanuma, Narashino, Chiba 2750016, Japan
[2] Tohoku Univ, 6-3 Aramaki Aza Aoba,Aoba Ku, Sendai, Miyagi 9808578, Japan
基金
日本学术振兴会;
关键词
Zero-knowledge proof; Card-based cryptography; Topswops; CRYPTOGRAPHIC PROTOCOLS; CARD; SECURE; COMPUTATION;
D O I
10.1007/s00354-024-00272-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Suppose that a sequence of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} cards, numbered 1 to n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document}, is placed face up in random order. Let k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} be the number on the first card in the sequence. Then take the first k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} cards from the sequence, rearrange that subsequence of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{k}}$$\end{document} cards in reverse order, and return them to the original sequence. Repeat this prefix reversal until the number on the first card in the sequence becomes 1. This is a one-player card game called Topswops. The computational complexity of Topswops has not been thoroughly investigated. For example, letting f(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{f}}({\varvec{n}})$$\end{document} denote the maximum number of prefix reversals for Topswops with n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} cards, values of f(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{f}}({\varvec{n}})$$\end{document} for n >= 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}\ge 20$$\end{document} remain unknown. In general, there is no known efficient algorithm for finding an initial sequence of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} cards that requires exactly & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} prefix reversals for any integers n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} and & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\ell }}$$\end{document}. In this paper, using a deck of cards, we propose a physical zero-knowledge proof protocol that allows a prover to convince a verifier that the prover knows an initial sequence of n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{n}}$$\end{document} cards that requires & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\ell }}$$\end{document} prefix reversals without leaking knowledge of that sequence. We also deal with Botdrops, a variant of Topswops.
引用
收藏
页码:399 / 428
页数:30
相关论文
共 76 条
[1]  
Bultel X., 2016, LIPIcs, V49
[2]   Physical Zero-Knowledge Proof for Makaro [J].
Bultel, Xavier ;
Dreier, Jannik ;
Dumas, Jean-Guillaume ;
Lafourcade, Pascal ;
Miyahara, Daiki ;
Mizuki, Takaaki ;
Nagao, Atsuki ;
Sasaki, Tatsuya ;
Shinagawa, Kazumasa ;
Sone, Hideaki .
STABILIZATION, SAFETY, AND SECURITY OF DISTRIBUTED SYSTEMS, SSS 2018, 2018, 11201 :111-125
[3]  
Chien YF, 2010, LECT NOTES COMPUT SC, V6099, P102
[4]  
DENBOER B, 1990, LECT NOTES COMPUT SC, V434, P208
[5]   Interactive Physical Zero-Knowledge Proof for Norinori [J].
Dumas, Jean-Guillaume ;
Lafourcade, Pascal ;
Miyahara, Daiki ;
Mizuki, Takaaki ;
Sasaki, Tatsuya ;
Sone, Hideaki .
COMPUTING AND COMBINATORICS, COCOON 2019, 2019, 11653 :166-177
[6]   Card-Based Zero-Knowledge Proof for the Nearest Neighbor Property: Zero-Knowledge Proof of ABC End View [J].
Fukasawa, Takuro ;
Manabe, Yoshifumi .
SECURITY, PRIVACY, AND APPLIED CRYPTOGRAPHY ENGINEERING, SPACE 2022, 2022, 13783 :147-161
[7]  
Gardner Martin., 1988, TIME TRAVEL OTHER MA
[8]   THE KNOWLEDGE COMPLEXITY OF INTERACTIVE PROOF SYSTEMS [J].
GOLDWASSER, S ;
MICALI, S ;
RACKOFF, C .
SIAM JOURNAL ON COMPUTING, 1989, 18 (01) :186-208
[9]   Card-Based Secure Sorting Protocol [J].
Haga, Rikuo ;
Toyoda, Kodai ;
Shinoda, Yuto ;
Miyahara, Daiki ;
Shinagawa, Kazumasa ;
Hayashi, Yuichi ;
Mizuki, Takaaki .
ADVANCES IN INFORMATION AND COMPUTER SECURITY, IWSEC 2022, 2022, 13504 :224-240
[10]   Card-Minimal Protocols for Three-Input Functions with Standard Playing Cards [J].
Haga, Rikuo ;
Hayashi, Yuichi ;
Miyahara, Daiki ;
Mizuki, Takaaki .
PROGRESS IN CRYPTOLOGY - AFRICACRYPT 2022, 2022, 13503 :448-468