An Efficient, FPGA-Based, Cluster Detection Algorithm Implementation for a Strip Detector Readout System in a Time Projection Chamber Polarimeter

被引:0
作者
Gregory, Kyle J. [1 ]
Hill, Joanne E. [1 ]
Black, J. Kevin [1 ,2 ]
Baumgartner, Wayne H. [1 ,3 ]
Jahoda, Keith [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA
[2] Rock Creek Sci, 140 East West Hwy, Silver Spring, MD 20910 USA
[3] Univ Maryland Baltimore Cty, 1000 Hilltop Circle, Baltimore, MD 21228 USA
来源
POLARIZATION: MEASUREMENT, ANALYSIS, AND REMOTE SENSING XII | 2016年 / 9853卷
关键词
Cluster Detection; FPGA; Strip Detector; Time Projection Chamber; photoelectron APV25; x-ray; polarization; polarimeter;
D O I
10.1117/12.2222800
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A fundamental challenge in a spaceborne application of a gas-based Time Projection Chamber (TPC) for observation of X-ray polarization is handling the large amount of data collected. The TPC polarimeter described uses the APV-25 Application Specific Integrated Circuit (ASIC) to readout a strip detector. Two dimensional photoelectron track images are created with a time projection technique and used to determine the polarization of the incident X-rays. The detector produces a 128x30 pixel image per photon interaction with each pixel registering 12 bits of collected charge. This creates challenging requirements for data storage and downlink bandwidth with only a modest incidence of photons and can have a significant impact on the overall mission cost. An approach is described for locating and isolating the photoelectron track within the detector image, yielding a much smaller data product, typically between 8x8 pixels and 20x20 pixels. This approach is implemented using a Microsemi RT-ProASIC3-3000 Field-Programmable Gate Array (FPGA), clocked at 20 MHz and utilizing 10.7k logic gates (14% of FPGA), 20 Block RAMs (17% of FPGA), and no external RAM. Results will be presented, demonstrating successful photoelectron track cluster detection with minimal impact to detector dead-time.
引用
收藏
页数:9
相关论文
共 9 条
[1]  
Baumgartner W., 2012, P SPIE, V8443
[2]   X-ray polarimetry with a micropattern TPC [J].
Black, J. K. ;
Baker, R. G. ;
Deines-Jones, P. ;
Hill, J. E. ;
Jahoda, K. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 581 (03) :755-760
[3]  
Black J.K., 2010, P SPIE, V7732, p77320X
[4]   Design and results from the APV25, a deep sub-micron CMOS front-end chip for the CMS tracker [J].
French, MJ ;
Jones, LL ;
Morrissey, Q ;
Neviani, A ;
Turchetta, R ;
Fulcher, J ;
Hall, G ;
Noah, E ;
Raymond, M ;
Cervelli, G ;
Moreira, P ;
Marseguerra, G .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 466 (02) :359-365
[5]  
Hill J.E, 2012, P SPIE, V8443
[6]  
Hill J.E., 2014, P SPIE, V9144
[7]  
Jahoda K., 2010, Proc. of SPIE, V7732, p773220W
[8]  
Jahoda K., 2014, P SPIE, V9144
[9]  
Pacciani L., 2003, P SPIE, V4843