An Interpolation and Prediction Algorithm for XCO2 Based on Multi-Source Time Series Data

被引:1
|
作者
Hu, Kai [1 ,2 ]
Zhang, Qi [1 ]
Feng, Xinyan [1 ]
Liu, Ziran [1 ]
Shao, Pengfei [1 ]
Xia, Min [1 ,2 ]
Ye, Xiaoling [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon satellite; interpolation; prediction; Yangtze River Delta region; CARBON-DIOXIDE; REANALYSIS; NETWORK; MODEL;
D O I
10.3390/rs16111907
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon satellites are an important observation tool for analyzing ground carbon emission. From the perspective of the Earth's scale, the spatiotemporal sparse characteristics of raw data observed from carbon satellite requires the accurate interpolation of data, and based on only this work, people predict future carbon emission trends and formulate appropriate management and conservation strategies. The existing research work has not fully considered the close correlation between data and seasons, as well as the characteristics accumulated over a long time scale. In this paper, firstly, by employing extreme random forests and auxiliary data, we reconstruct a daily average CO2 dataset at a resolution of 0.25 degrees, and achieve a validated determination coefficient of 0.92. Secondly, introducing technologies such as Time Convolutional Networks (TCN), Channel Attention Mechanism (CAM), and Long Short-Term Memory networks (LSTM), we conduct atmospheric CO2 concentration interpolation and predictions. When conducting predictive analysis for the Yangtze River Delta region, we train the model by using quarterly data from 2016 to 2020; the correlation coefficient in summer is 0.94, and in winter it is 0.91. These experimental data indicate that compared to other algorithms, this algorithm has a significantly better performance.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] XCO2 Fusion Algorithm Based on Multi-Source Greenhouse Gas Satellites and CarbonTracker
    Liang, Ailin
    Pang, Ruonan
    Chen, Cheng
    Xiang, Chengzhi
    ATMOSPHERE, 2023, 14 (09)
  • [2] Time series prediction method for multi-source observation data
    Gao, Xinjue
    Xin, Yue
    Yang, Jing
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2024,
  • [3] Generating Daily High-Resolution Regional XCO2 by Deep Neural Network and Multi-Source Data
    Tian, Wenjie
    Zhang, Lili
    Yu, Tao
    Yao, Dong
    Zhang, Wenhao
    Wang, Chunmei
    ATMOSPHERE, 2024, 15 (08)
  • [4] Approximation of multi-year time series of XCO2 concentrations using satellite observations and statistical interpolation methods
    Wefers, W. M.
    Lehnert, L. W.
    Schmidt, D.
    Reuter, M.
    Buchwitz, M.
    Kammann, C.
    Velten, K.
    Hase, F.
    Notholt, J.
    Kubistin, D.
    Mueller-Williams, J.
    Lindauer, M.
    ATMOSPHERIC RESEARCH, 2023, 294
  • [5] Cleaning of Multi-Source Uncertain Time Series Data Based on PageRank
    高嘉伟
    孙纪舟
    Journal of Donghua University(English Edition), 2023, 40 (06) : 695 - 700
  • [6] Travel time prediction of road network based on multi-source data fusion
    Liu, Wenting
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 850 - 854
  • [7] A Gene-disease Association Prediction Algorithm Based on Multi-source Data Fusion
    Wang F.
    International Journal Bioautomation, 2021, 26 (01) : 19 - 36
  • [8] Travel time prediction of multi-source historical data fusion
    Liu Wen-ting
    Wang Zhi-jian
    Yan Qin
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 777 - 781
  • [9] Precision requirements for space-based XCO2 data
    Miller, C. E.
    Crisp, D.
    DeCola, P. L.
    Olsen, S. C.
    Randerson, J. T.
    Michalak, A. M.
    Alkhaled, A.
    Rayner, P.
    Jacob, D. J.
    Suntharalingam, P.
    Jones, D. B. A.
    Denning, A. S.
    Nicholls, M. E.
    Doney, S. C.
    Pawson, S.
    Boesch, H.
    Connor, B. J.
    Fung, I. Y.
    O'Brien, D.
    Salawitch, R. J.
    Sander, S. P.
    Sen, B.
    Tans, P.
    Toon, G. C.
    Wennberg, P. O.
    Wofsy, S. C.
    Yung, Y. L.
    Law, R. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
  • [10] Weld penetration state identification based on time series multi-source data fusion
    Wang, Fei
    Chen, Yourong
    Wang, Qiyue
    Liu, Liyuan
    Alam, Muhammad
    Zhang, Xudong
    Jiao, Wenhua
    WELDING IN THE WORLD, 2024, : 1401 - 1418