Mixed double Roman domination in graphs

被引:0
作者
Ahangar, H. Abdollahzadeh [1 ]
Chellali, M. [2 ]
Sheikholeslami, S. M. [3 ]
Valenzuela-Tripodoro, J. C. [4 ]
机构
[1] Babol Noshirvani Univ Technol, Dept Math, Shariati Ave, Babol 4714871167, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[4] Univ Cadiz, Dept Math, Cadiz, Spain
关键词
Roman domination; double Roman domination; mixed double Roman; domination;
D O I
10.22049/cco.2024.28947.1789
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G=(V,E) be a simple graph with vertex set V and edge set E. A mixed double Roman dominating function (MDRDF) of G is a function f : V boolean OR E -> {0,1,2,3} satisfying (1) for any element x is an element of V boolean OR E with f(x)=0, there must be either element y is an element of V boolean OR E, with f(y)=3, which is adjacent or incident to x, or either two elements y,z is an element of V boolean OR E, with f(y),f(z)=2 which are adjacent or incident to x; (2) for any element x is an element of V boolean OR E with f(x)=1, there must be either element y is an element of V boolean OR E, with f(y)>= 2, which is adjacent or incident to x. The weight of an MDRDF f is w(f)=f(V boolean OR E)=& sum;(x is an element of V boolean OR E )f(x) and the minimum weight among all the MDRD functions the MDRD-number, gamma(& lowast;)(dR)(G), of the graph G. In this paper we start the study of this variation of the classic Roman domination problem by setting some basic results, giving exact values and sharp bounds of the MDRD number and we approach the study of the complexity of the decision problem associated to the MDR domination in graphs.
引用
收藏
页数:17
相关论文
共 16 条
[1]   Mixed Roman Domination in Graphs [J].
Ahangar, H. Abdollahzadeh ;
Haynes, Teresa W. ;
Valenzuela-Tripodoro, J. C. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (04) :1443-1454
[2]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[3]   On the strong Roman domination number of graphs [J].
Alvarez-Ruiz, M. P. ;
Mediavilla-Gradolph, T. ;
Sheikholeslami, S. M. ;
Valenzuela-Tripodoro, J. C. ;
Yero, I. G. .
DISCRETE APPLIED MATHEMATICS, 2017, 231 :44-59
[4]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[5]   Varieties of Roman domination II [J].
Chellali, M. ;
Jafari Rad, N. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) :966-984
[6]  
Chellali M., 2020, Topics in Domination in Graphs, P365
[7]   A Note on the Double Roman Domination Number of Graphs [J].
Chen, Xue-gang .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (01) :205-212
[8]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[9]   Linear time solvable optimization problems on graphs of bounded clique-width [J].
Courcelle, B ;
Makowsky, JA ;
Rotics, U .
THEORY OF COMPUTING SYSTEMS, 2000, 33 (02) :125-150
[10]  
Dehgardi N., 2018, Communications in Combinatorics and Optimization, V3, P79