Large Time Behavior of Finite Difference Schemes for the Transport Equation

被引:0
作者
Coeuret, Lucas [1 ]
机构
[1] Univ Toulouse, Inst Math Toulouse, UMR5219, CNRS,UPS, 118 Route Narbonne, F-31062 Toulouse 9, France
来源
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, VOL II, HYP2022 | 2024年 / 35卷
关键词
Discrete convolution; Local limit theorem; Finite difference approximation; Stability; CONVOLUTION POWERS; COMPLEX FUNCTIONS; STABILITY;
D O I
10.1007/978-3-031-55264-9_6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to study the large time behavior of finite difference schemes for the transport equation, we need to describe the pointwise asymptotic behavior of iterated convolutions for finitely supported sequences indexed on Z. In this paper, we investigate this question by presenting the main result of [2] which is a generalization of the so-called local limit theorem in probability theory to complex valued sequences.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 15 条
[1]   Closed Form Solution and Equivalent Equation Approximation of Linear Advection by a Non Dissipative Second Order Scheme for Step Initial Conditions [J].
Arbia, G. ;
Bouche, D. .
ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) :151-162
[2]  
Coeuret L, 2022, Arxiv, DOI arXiv:2201.01514
[3]  
Conway JB., 1990, COURSE FUNCTIONAL AN
[4]  
Coulombel J.-F, 2022, Annales Mathematiques Blaise Pascal
[5]   Generalized Gaussian bounds for discrete convolution powers [J].
Coulombel, Jean-Francois ;
Faye, Gregory .
REVISTA MATEMATICA IBEROAMERICANA, 2022, 38 (05) :1553-1604
[6]   Finite volume transport schemes [J].
Despres, Bruno .
NUMERISCHE MATHEMATIK, 2008, 108 (04) :529-556
[7]   Convolution powers of complex functions on Z [J].
Diaconis, Persi ;
Saloff-Coste, Laurent .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (10) :1106-1130
[8]   Green's function pointwise estimates for the modified Lax-Friedrichs scheme [J].
Godillon, P .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (01) :1-39
[9]  
GREVILLE TN, 1966, SIAM REV, V8, P567
[10]   SIMPLE PROOF OF WIENERS 1-F THEOREM [J].
NEWMAN, DJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (01) :264-265