Overcoming the central planner approach - Bilevel optimization of the European energy transition

被引:1
作者
Shu, David Yang [1 ]
Reinert, Christiane [2 ]
Mannhardt, Jacob [2 ]
Leenders, Ludger [1 ]
Luethje, Jannik [4 ]
Mitsos, Alexander [3 ,4 ,5 ]
Bardow, Andre [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Energy & Proc Syst Engn, CH-8092 Zurich, Switzerland
[2] Rhein Westfal TH Aachen, Inst Tech Thermodynam, D-52062 Aachen, Germany
[3] JARA CSD, D-52056 Aachen, Germany
[4] Rhein Westfal TH Aachen, Proc Syst Engn AVT SVT, D-52074 Aachen, Germany
[5] Forschungszentrum Julich, Inst Energy & Climate Res, Energy Syst Engn IEK-10, D-52425 Julich, Germany
基金
欧盟地平线“2020”;
关键词
SYSTEMS; MODEL; EXPANSION; PROGRAMS; MARKETS; IMPACT;
D O I
10.1016/j.isci.2024.110168
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The energy transition is a multinational challenge to mitigate climate change, with a joint reduction target for greenhouse gas emissions. Simultaneously, each country is interested in minimizing its own energy supply cost. Still, most energy system models neglect national interests when identifying cost -optimal transition pathways. We design the European energy system transition until 2050, considering competition between countries in a shared electricity and carbon market using bilevel optimization. We find that national objectives substantially impact the transition pathway: Compared to the model solved using the common centralized optimization, the overall installed capacity increases by just 3% when including national interests. However, the distribution of the installed capacity changes dramatically by more than 40% in most countries. Our results underline the risk of miscalculating the need for national capacity expansion when neglecting stakeholder representation in energy system models and demonstrate the need for cooperation for an efficient energy transition.
引用
收藏
页数:24
相关论文
共 55 条
  • [1] Reliability standards and generation adequacy assessments for interconnected electricity systems
    Astier, Nicolas
    Ovaere, Marten
    [J]. ENERGY POLICY, 2022, 168
  • [2] Life-Cycle Assessment of Sector-Coupled National Energy Systems: Environmental Impacts of Electricity, Heat, and Transportation in Germany Till 2050
    Baumgaertner, Nils
    Deutz, Sarah
    Reinert, Christiane
    Nolzen, Niklas
    Kuepper, Lucas Elias
    Hennen, Maike
    Hollermann, Dinah Elena
    Bardow, Andre
    [J]. FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [3] Dempe S., 2015, Bilevel Programming Problems, DOI [10.1007/978-3-662-45827-3., DOI 10.1007/978-3-662-45827-3]
  • [4] DIN Deutsches Institut far Normung e.V., 2021, Environmental Management - Life Cycle Assessment - Principles and Framework: (ISO 14040:2006 + Amd 1:2020)
  • [5] DIN Deutsches Institut far Normung e.V, 2018, ISO 14044:2006 + Amd 1:2017)
  • [6] Ensuring Profitability of Energy Storage
    Dvorkin, Yury
    Fernandez-Blanco, Ricardo
    Kirschen, Daniel S.
    Pandzic, Hrvoje
    Watson, Jean-Paul
    Silva-Monroy, Cesar A.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (01) : 611 - 623
  • [7] The World Gas Model A multi-period mixed complementarity model for the global natural gas market
    Egging, Ruud
    Holz, Franziska
    Gabriel, Steven A.
    [J]. ENERGY, 2010, 35 (10) : 4016 - 4029
  • [8] ENTSO-E, 2019, Monthly Aggregated Hourly Load by Country 2015-2017
  • [9] ENTSO-E, 2021, Ten-Year Network, Development Plan 2020 - Main Report
  • [10] European Comission, 2019, The European Green Deal, DOI [10.2833/9937, DOI 10.2833/9937]