Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer?

被引:11
作者
Tadic, Srdan [1 ]
Martinez, Alfredo [1 ]
机构
[1] Ctr Biomed Res La Rioja CIBIR, Angiogenesis Unit, Oncol Area, Logrono, Spain
基金
欧盟地平线“2020”;
关键词
cancer; cancer vaccines; anti-angiogenic treatment; mRNA; DNA; tumor vasculature; angiogenesis; ENDOTHELIAL GROWTH-FACTOR; T-CELL IMMUNITY; DNA VACCINE; PROGRESSIVE GLIOBLASTOMA; IMMUNOGENE THERAPY; DENDRITIC CELLS; FUSION GENE; RESPONSES; IMMUNOTHERAPY; MECHANISMS;
D O I
10.3389/fimmu.2024.1433185
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Tumor related angiogenesis is an attractive target in cancer therapeutic research due to its crucial role in tumor growth, invasion, and metastasis. Different agents were developed aiming to inhibit this process; however they had limited success. Cancer vaccines could be a promising tool in anti-cancer/anti-angiogenic therapy. Cancer vaccines aim to initiate an immune response against cancer cells upon presentation of tumor antigens which hopefully will result in the eradication of disease and prevention of its recurrence by inducing an efficient and long-lasting immune response. Different vaccine constructs have been developed to achieve this and they could include either protein-based or nucleic acid-based vaccines. Nucleic acid vaccines are simple and relatively easy to produce, with high efficiency and safety, thus prompting a high interest in the field. Different DNA vaccines have been developed to target crucial regulators of tumor angiogenesis. Most of them were successful in pre-clinical studies, mostly when used in combination with other therapeutics, but had limited success in the clinic. Apparently, different tumor evasion mechanisms and reduced immunogenicity still limit the potential of these vaccines and there is plenty of room for improvement. Nowadays, mRNA cancer vaccines are making remarkable progress due to improvements in the manufacturing technology and represent a powerful potential alternative. Apart from their efficiency, mRNA vaccines are simple and cheap to produce, can encompass multiple targets simultaneously, and can be quickly transferred from bench to bedside. mRNA vaccines have already accomplished amazing results in cancer clinical trials, thus ensuring a bright future in the field, although no anti-angiogenic mRNA vaccines have been described yet. This review aims to describe recent advances in anti-angiogenic DNA vaccine therapy and to provide perspectives for use of revolutionary approaches such are mRNA vaccines for anti-angiogenic treatments.
引用
收藏
页数:23
相关论文
共 185 条
[61]   Clinical and immunological effects of mRNA vaccines in malignant diseases [J].
Heine, Annkristin ;
Juranek, Stefan ;
Brossart, Peter .
MOLECULAR CANCER, 2021, 20 (01)
[62]   Harnessing DNA-induced immune responses for improving cancer vaccines [J].
Herrada, Andres A. ;
Rojas-Colonelli, Nicole ;
Gonzalez-Figueroa, Paula ;
Roco, Jonathan ;
Oyarce, Cesar ;
Ligtenberg, Maarten A. ;
Lladser, Alvaro .
HUMAN VACCINES & IMMUNOTHERAPEUTICS, 2012, 8 (11) :1682-1693
[63]   Turning the corner on therapeutic cancer vaccines [J].
Hollingsworth, Robert E. ;
Jansen, Kathrin .
NPJ VACCINES, 2019, 4 (1)
[64]   A DNA vaccine targeting angiomotin inhibits angiogenesis and suppresses tumor growth [J].
Holmgren, Lars ;
Ambrosino, Elena ;
Birot, Olivier ;
Tullus, Carl ;
Veitonmaki, Niina ;
Levchenko, Tetyana ;
Carlson, Lena-Maria ;
Musiari, Piero ;
Iezzi, Manuela ;
Curcio, Claudia ;
Forni, Guido ;
Cavallo, Federica ;
Kiessling, Rolf .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (24) :9208-9213
[65]   Lipid nanoparticles for mRNA delivery [J].
Hou, Xucheng ;
Zaks, Tal ;
Langer, Robert ;
Dong, Yizhou .
NATURE REVIEWS MATERIALS, 2021, 6 (12) :1078-1094
[66]   Engineering Nanoparticle-Coated Bacteria as Oral DNA Vaccines for Cancer Immunotherapy [J].
Hu, Qinglian ;
Wu, Min ;
Fang, Chun ;
Cheng, Chanyong ;
Zhao, Mengmeng ;
Fang, Weihuan ;
Chu, Paul K. ;
Ping, Yuan ;
Tang, Guping .
NANO LETTERS, 2015, 15 (04) :2732-2739
[67]   Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma [J].
Hu, Zhuting ;
Leet, Donna E. ;
Allesoe, Rosa L. ;
Oliveira, Giacomo ;
Li, Shuqiang ;
Luoma, Adrienne M. ;
Liu, Jinyan ;
Forman, Juliet ;
Huang, Teddy ;
Iorgulescu, J. Bryan ;
Holden, Rebecca ;
Sarkizova, Siranush ;
Gohil, Satyen H. ;
Redd, Robert A. ;
Sun, Jing ;
Elagina, Liudmila ;
Giobbie-Hurder, Anita ;
Zhang, Wandi ;
Peter, Lauren ;
Ciantra, Zoe ;
Rodig, Scott ;
Olive, Oriol ;
Shetty, Keerthi ;
Pyrdol, Jason ;
Uduman, Mohamed ;
Lee, Patrick C. ;
Bachireddy, Pavan ;
Buchbinder, Elizabeth I. ;
Yoon, Charles H. ;
Neuberg, Donna ;
Pentelute, Bradley L. ;
Hacohen, Nir ;
Livak, Kenneth J. ;
Shukla, Sachet A. ;
Olsen, Lars Ronn ;
Barouch, Dan H. ;
Wucherpfennig, Kai W. ;
Fritsch, Edward F. ;
Keskin, Derin B. ;
Wu, Catherine J. ;
Ott, Patrick A. .
NATURE MEDICINE, 2021, 27 (03) :515-+
[68]   Anti-angiogenic agents - overcoming tumour endothelial cell anergy and improving immunotherapy outcomes [J].
Huinen, Zowi R. ;
Huijbers, Elisabeth J. M. ;
van Beijnum, Judy R. ;
Nowak-Sliwinska, Patrycja ;
Griffioen, Arjan W. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (08) :527-540
[69]  
Imai A, 2017, MOL CLIN ONCOL, V6, P807, DOI 10.3892/mco.2017.1237
[70]   An mRNA Vaccine against SARS-CoV-2-Preliminary Report [J].
Jackson, L. A. ;
Anderson, E. J. ;
Rouphael, N. G. ;
Roberts, P. C. ;
Makhene, M. ;
Coler, R. N. ;
McCullough, M. P. ;
Chappell, J. D. ;
Denison, M. R. ;
Stevens, L. J. ;
Pruijssers, A. J. ;
McDermott, A. ;
Flach, B. ;
Doria-Rose, N. A. ;
Corbett, K. S. ;
Morabito, K. M. ;
O'Dell, S. ;
Schmidt, S. D. ;
Swanson, P. A. ;
Padilla, M. ;
Mascola, J. R. ;
Neuzil, K. M. ;
Bennett, H. ;
Sun, W. ;
Peters, E. ;
Makowski, M. ;
Albert, J. ;
Cross, K. ;
Buchanan, W. ;
Pikaart-Tautges, R. ;
Ledgerwood, J. E. ;
Graham, B. S. ;
Beigel, J. H. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (20) :1920-1931