Long time stability for the derivative nonlinear Schrödinger equation

被引:0
|
作者
Liu, Jianjun [1 ]
Xiang, Duohui [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610065, Peoples R China
关键词
Long time stability; Derivative nonlinear Schr & ouml; dinger; equation; Rational normal form; BIRKHOFF NORMAL-FORM; INVARIANT CANTOR MANIFOLDS; KLEIN-GORDON EQUATIONS; SCHRODINGER-EQUATION; PERIODIC SOLUTIONS; THEOREM; EXISTENCE;
D O I
10.1016/j.jmaa.2024.128394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the long time dynamics of the solutions of the derivative nonlinear Schr & ouml;dinger equation on one dimensional torus without external parameters. By using rational normal form, we prove the long time stability for generic small initial data. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Instability of the solitary waves for the generalized derivative nonlinear Schr?dinger equation in the degenerate case
    Miao, Changxing
    Tang, Xingdong
    Xu, Guixiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 361 : 339 - 375
  • [22] A partial derivative<overline>-Dressing Method for the Kundu-Nonlinear Schrödinger Equation
    Hu, Jiawei
    Zhang, Ning
    MATHEMATICS, 2024, 12 (02)
  • [23] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025, : 1127 - 1179
  • [24] The nonlinear Schrödinger equation in cylindrical geometries
    Krechetnikov, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (15)
  • [25] Long-time Anderson localization for the nonlinear quasi-periodic Schrödinger equation on Zd
    Cong, Hongzi
    Shi, Yunfeng
    Wang, W. -m.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 422 : 306 - 328
  • [26] Robustness and stability of doubly periodic patterns of the focusing nonlinear Schrödinger equation
    Yin, H. M.
    Li, J. H.
    Zheng, Z.
    Chiang, K. S.
    Chow, K. W.
    CHAOS, 2024, 34 (01)
  • [27] Painlevé analysis of the resonant third-order nonlinear Schrödinger equation
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [28] Traveling wave solutions of the derivative nonlinear Schrödinger
    Kudryashov, Nikolay A.
    Lavrova, Sofia F.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 477
  • [29] Nonlinear smoothing for the periodic generalized nonlinear Schr?dinger equation
    McConnell, Ryan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 : 353 - 379
  • [30] ON THE GLOBAL WELL-POSEDNESS OF THE CALOGERO-SUTHERLAND DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION
    Badreddine, Rana
    PURE AND APPLIED ANALYSIS, 2024, 6 (02): : 379 - 414