Long time stability for the derivative nonlinear Schrödinger equation

被引:0
|
作者
Liu, Jianjun [1 ]
Xiang, Duohui [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610065, Peoples R China
关键词
Long time stability; Derivative nonlinear Schr & ouml; dinger; equation; Rational normal form; BIRKHOFF NORMAL-FORM; INVARIANT CANTOR MANIFOLDS; KLEIN-GORDON EQUATIONS; SCHRODINGER-EQUATION; PERIODIC SOLUTIONS; THEOREM; EXISTENCE;
D O I
10.1016/j.jmaa.2024.128394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the long time dynamics of the solutions of the derivative nonlinear Schr & ouml;dinger equation on one dimensional torus without external parameters. By using rational normal form, we prove the long time stability for generic small initial data. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Long time stability result for d-dimensional nonlinear Schrödinger equation
    Cong, Hongzi
    Li, Siming
    Wu, Xiaoqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 394 : 174 - 208
  • [2] Birkhoff Normal Form for the Derivative Nonlinear Schrödinger Equation
    Jian Jun Liu
    Acta Mathematica Sinica, English Series, 2022, 38 : 249 - 262
  • [3] Complex excitations for the derivative nonlinear Schrödinger equation
    Huijuan Zhou
    Yong Chen
    Xiaoyan Tang
    Yuqi Li
    Nonlinear Dynamics, 2022, 109 : 1947 - 1967
  • [4] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [5] Long-time asymptotic behavior for the Hermitian symmetric space derivative nonlinear Schrödinger equation
    Chen, Mingming
    Geng, Xianguo
    Liu, Huan
    ADVANCED NONLINEAR STUDIES, 2024, 24 (04) : 819 - 856
  • [6] Long Time Anderson Localization for the Nonlinear Random Schrödinger Equation
    W.-M. Wang
    Zhifei Zhang
    Journal of Statistical Physics, 2009, 134 : 953 - 968
  • [7] Orbital stability of a soliton solution for the derivative nonlinear Schrödinger equation in the L2 space
    Yang, Yiling
    Fan, Engui
    Liu, Yue
    MATHEMATISCHE ZEITSCHRIFT, 2025, 310 (02)
  • [8] KAM Tori for the Derivative Quintic Nonlinear Schrödinger Equation
    Dong Feng Yan
    Guang Hua Shi
    Acta Mathematica Sinica, English Series, 2020, 36 : 153 - 170
  • [9] KAM Tori for the Derivative Quintic Nonlinear Schr?dinger Equation
    Dong Feng YAN
    Guang Hua SHI
    Acta Mathematica Sinica,English Series, 2020, 36 (02) : 153 - 170
  • [10] Inverse scattering transform for the integrable fractional derivative nonlinear Schrödinger equation
    An, Ling
    Ling, Liming
    Zhang, Xiaoen
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 458