Deciphering fundamental mechanism of different-type diluents on manipulating interfacial chemistry toward lithium metal anode

被引:4
作者
Liu, Zhenfang [1 ]
Guo, Weiqian [2 ,3 ]
Tan, Jin [1 ]
Yan, Hanbing [2 ,3 ]
Bao, Chenguang [1 ]
Tian, Yao [2 ,3 ]
Liu, Qi [1 ]
Li, Baohua [2 ,3 ]
机构
[1] Hunan Univ, Coll Mat Sci & Engn, Changsha, Hunan, Peoples R China
[2] Tsinghua Univ, Shenzhen Key Lab Power Battery Safety, Shenzhen, Peoples R China
[3] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Shenzhen Int Grad Sch, Shenzhen, Peoples R China
关键词
High concentration electrolyte; Interfacial chemistry; Li metal battery; Li anode; Dendrite Li; ELECTROLYTE; BATTERIES; LIODFB;
D O I
10.1016/j.cej.2024.151812
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The growth of dendrites on lithium metal anode is troublesome because it induces irreversible capacity loss and safety hazards. Formulating localized high -concentration electrolytes (LHCEs) is an alternative solution to satisfy these challenges. However, the role of diluents in tailoring interfacial chemistry remains to be explicated. Herein, we decipher the direct relationship between different -type diluents and Li -coordinated solvation at the molecular scale. Compare to hydrofluoroethers (HFE), the "active " difluoro ethylene carbonate (DFEC) delivers a pronounced interaction with Li + and 1, 2-dimethoxyethane (DME) molecule, resulting in a compressed but more accumulated aggregates (AGGs) solvation shell, assisting in the expected chemical nature of SEI with defluorination of DFEC. Consequently, DFEC-based LHCEs (D-LHCEs) realize a record -long lifespan over 3000 h with dendrite -free at 1 mA cm -2 and outstanding dendrite tolerance even under 3 mA cm -2 in symmetric cells. The assembled full cells with D-LHCEs outperform a superior capacity retention of -86.83 % with average CE of -99.42 % after 500 cycles at 0.5C and the remarkable cycling performance even under harsh conditions (including pouch cells or with controlled N/P of 1.8) in 4.45 V -level Li||LiCoO 2 cells. This work highlights the decisive role of diluents in pursuing high -efficiency electrolytes for high-energy Li metal batteries.
引用
收藏
页数:12
相关论文
共 59 条
[1]   High Energy Density Rechargeable Batteries Based on Li Metal Anodes. The Role of Unique Surface Chemistry Developed in Solutions Containing Fluorinated Organic Co-solvents [J].
Aurbach, Doron ;
Markevich, Elena ;
Salitra, Gregory .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (50) :21161-21176
[2]   Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries [J].
Cao, Xia ;
Zou, Lianfeng ;
Matthews, Bethany E. ;
Zhang, Linchao ;
He, Xinzi ;
Ren, Xiaodi ;
Engelhard, Mark H. ;
Burton, Sarah D. ;
El-Khoury, Patrick Z. ;
Lim, Hyung-Seok ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Wang, Chunsheng ;
Arey, Bruce W. ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
ENERGY STORAGE MATERIALS, 2021, 34 :76-84
[3]   Electrolyte Design Enabling a High-Safety and High-Performance Si Anode with a Tailored Electrode-Electrolyte Interphase [J].
Cao, Zhang ;
Zheng, Xueying ;
Qu, Qunting ;
Huang, Yunhui ;
Zheng, Honghe .
ADVANCED MATERIALS, 2021, 33 (38)
[4]   Grain-Boundary-Rich Artificial SEI Layer for High-Rate Lithium Metal Anodes [J].
Chen, Chao ;
Liang, Qianwen ;
Wang, Gang ;
Liu, Dongdong ;
Xiong, Xunhui .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (04)
[5]   High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Mei, Donghai ;
Han, Kee Sung ;
Engelhard, Mark H. ;
Zhao, Wengao ;
Xu, Wu ;
Liu, Jun ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2018, 30 (21)
[6]   Armoring LiNi1/3Co1/3Mn1/3O2 Cathode with Reliable Fluorinated Organic-Inorganic Hybrid Interphase Layer toward Durable High Rate Battery [J].
Chen Yu ;
Zhao Weimin ;
Zhang Quanhai ;
Yang Guangzhi ;
Zheng Jianming ;
Tang Wei ;
Xu Qunjie ;
Lai Chunyan ;
Yang Junhe ;
Peng Chengxin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (19)
[7]   A self-adapting artificial SEI layer enables superdense lithium deposition for high performance lithium anode [J].
Dong, Qingyuan ;
Hong, Bo ;
Fan, Hailin ;
Gao, Chunhui ;
Huang, XinJing ;
Bai, Maohui ;
Zhou, Yangen ;
Lai, Yanqing .
ENERGY STORAGE MATERIALS, 2022, 45 :1220-1228
[8]   Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization [J].
Du, Mingjie ;
Liao, Kaiming ;
Lu, Qian ;
Shao, Zongping .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (06) :1780-1804
[9]   Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions [J].
Gao, Yue ;
Yan, Zhifei ;
Gray, Jennifer L. ;
He, Xin ;
Wang, Daiwei ;
Chen, Tianhang ;
Huang, Qingquan ;
Li, Yuguang C. ;
Wang, Haiying ;
Kim, Seong H. ;
Mallouk, Thomas E. ;
Wang, Donghai .
NATURE MATERIALS, 2019, 18 (04) :384-+
[10]   High-Energy-Density Lithium Metal Batteries with Impressive Li+ Transport Dynamic and Wide-Temperature Performance from-60 to 60 °C [J].
Han, Ran ;
Wang, Zhicheng ;
Huang, Dan ;
Zhang, Fengrui ;
Pan, Anran ;
Song, Haiqi ;
Wei, Yumeng ;
Liu, Yang ;
Wang, Lei ;
Li, Yajie ;
Xu, Jingjing ;
Hu, Jianchen ;
Wu, Xiaodong .
SMALL, 2023, 19 (25)