Multifunctional porous polyaniline/phosphorus-nitrogen co-doped graphene nanocomposite for efficient room temperature ammonia sensing and high-performance supercapacitor applications

被引:6
|
作者
Singh, Ravinder [1 ,2 ]
Agrohiya, Sunil [4 ]
Rawal, Ishpal [3 ]
Ohlan, Anil [1 ]
Dahiya, Sajjan [1 ]
Punia, R. [1 ]
Maan, A. S. [1 ]
机构
[1] Maharshi Dayanand Univ, Dept Phys, Rohtak 124001, Haryana, India
[2] DPG Degree Coll, Dept Phys, Gurugram 122001, Haryana, India
[3] Univ Delhi, Kirori Mal Coll, Dept Phys, Delhi 110007, India
[4] Jan Nayak Choudhary Devi Lal Mem Coll, Dept Phys, Sirsa 125056, Haryana, India
关键词
Porous polyaniline; Phosphorus -nitrogen co -doped graphene; Hydrothermal synthesis; p -n heterojunction; Ammonia sensing; Energy storage devices; TERNARY NANOCOMPOSITE; FACILE FABRICATION; OXIDE; PHOSPHORUS; COMPOSITE; SENSOR; GRAPHENE/POLYANILINE; HYBRID; GAS; NANOSHEETS;
D O I
10.1016/j.apsusc.2024.160368
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the pursuit of developing advanced materials with multifunctional capabilities, the integration of polymers and graphene-based materials has garnered significant attention. In the quest for the synergy between polyaniline (PANI) and phosphorus, nitrogen dual co-doped graphene (PNGN) has emerged as a promising avenue for multifunctional applications in supercapacitors and gas sensing devices. The PANI/PNGN 15 % nanocomposites were synthesized by a combination of hydrothermal processing and in-situ polymerization techniques. The synthesized nanocomposites were characterized using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. The PANI/PNGN 15 % nanocomposite sensor has shown sensing response values of -810 %, the response time of 21 s, recovery time of 56 s, and a detection limit of 0.082 ppm. The PANI/PNGN 15 % nanocomposite achieved a remarkable specific capacitance of 750.41 F g-1 at a current density of 5 A g-1. Moreover, the symmetrical supercapacitor exhibits remarkable rate capability, achieving (-82.14 % at 5 Ag-1), while also maintaining excellent cycling stability. The synergistic effects of PANI and PNGN contribute to the development of highperformance devices, paving the way for advancements in the fields of supercapacitors and gas sensing technologies.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Fuel coke derived nitrogen and phosphorus co-doped porous graphene structures for high-performance supercapacitors: The trail towards a brown-to-green transition
    Thomas, Riya
    Balachandran, Manoj
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [42] Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors
    Yong Zhang
    Qingyun Zhou
    Wenhui Ma
    Chaohui Wang
    Xuefeng Wang
    Jiajun Chen
    Tiantian Yu
    Shan Fan
    Nano Research, 2023, 16 : 9519 - 9529
  • [43] Nanocellulose/nitrogen and fluorine co-doped graphene composite hydrogels for high-performance supercapacitors
    Zhang, Yong
    Zhou, Qingyun
    Ma, Wenhui
    Wang, Chaohui
    Wang, Xuefeng
    Chen, Jiajun
    Yu, Tiantian
    Fan, Shan
    NANO RESEARCH, 2023, 16 (07) : 9519 - 9529
  • [44] Nitrogen-oxygen co-doped corrugation-like porous carbon for high performance supercapacitor
    Wang Yang
    Wu Yang
    Lina Kong
    Shuanlong Di
    Xiujuan Qin
    Frontiers of Materials Science, 2018, 12 : 283 - 291
  • [45] Nitrogen-oxygen co-doped corrugation-like porous carbon for high performance supercapacitor
    Yang, Wang
    Yang, Wu
    Kong, Lina
    Di, Shuanlong
    Qin, Xiujuan
    FRONTIERS OF MATERIALS SCIENCE, 2018, 12 (03) : 283 - 291
  • [46] Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications
    Hui Xu
    Jian Liu
    Yong Chen
    Chun-Lei Li
    Jing Tang
    Qi Li
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 10674 - 10683
  • [47] A high-performance supercapacitor based on cerium molybdate nanoparticles anchored on N, P co-doped reduced graphene oxide nanocomposite as the electrode
    Abdollah Yari
    Sajad Heidari Fathabad
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 13051 - 13062
  • [48] A high-performance supercapacitor based on cerium molybdate nanoparticles anchored on N, P co-doped reduced graphene oxide nanocomposite as the electrode
    Yari, Abdollah
    Heidari Fathabad, Sajad
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (16) : 13051 - 13062
  • [49] Synthesis of three-dimensional nitrogen-doped graphene/polyaniline hydrogels for high performance supercapacitor applications
    Xu, Hui
    Liu, Jian
    Chen, Yong
    Li, Chun-Lei
    Tang, Jing
    Li, Qi
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (14) : 10674 - 10683
  • [50] Nitrogen and phosphorus Co-doped porous carbon: Dopant, synthesis, performance enhancement mechanism and versatile applications
    Liu, Fangfang
    Niu, Jinan
    Chuan, Xiuyun
    Zhao, Yupeng
    JOURNAL OF POWER SOURCES, 2024, 601