High-Precision Magnetic Field Control of Active Magnetic Compensation System Based on MFAC-RBFNN

被引:4
作者
Li, Yanbin [1 ]
Cui, Peiling [2 ,3 ]
Li, Haitao [1 ]
Yang, Zhouqiang [1 ]
Liu, Xikai [4 ,5 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Inst Large Scale Sci Facil, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[3] Beihang Univ, Ctr Zero Magnet Field Sci, Beijing 100191, Peoples R China
[4] Beihang Univ, Zhejiang Engn Res Ctr Precis Electromagnet Control, Ningbo 315800, Peoples R China
[5] Beihang Univ, Ningbo Inst Technol, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic fields; Magnetic shielding; Magnetic noise; Coils; Magnetic field measurement; Magnetic flux; Mathematical models; Active magnetic compensation; high-precision magnetic field control; magnetic field disturbances; model-free adaptive control (MFAC); radial basis function neural network (RBFNN); FREE ADAPTIVE-CONTROL; MODEL; MAGNETOENCEPHALOGRAPHY;
D O I
10.1109/TIM.2024.3394482
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Active magnetic compensation technology can effectively reduce magnetic field disturbances within a magnetic shielding room (MSR) and improve the signal-to-noise ratio of magnetoencephalography (MEG) measurement. But, for small-sized MSRs with external compensation coils, achieving high-precision magnetic field control is challenging, because it is difficult to establish an accurate mathematical model. In this article, an active magnetic compensation system is constructed based on model-free adaptive control with a radial basis function neural network (MFAC-RBFNN) method, which addresses the limitations of magnetic field control accuracy caused by the requirement for precise system model information. The nonlinear and coupling characteristics of the active magnetic compensation system were analyzed, and a model-free adaptive control (MFAC) controller is designed based on the input current and output magnetic field, and the utilization of radial basis function neural network (RBFNN) for estimating magnetic field disturbances. The experimental results are given to prove that the algorithm proposed can achieve high-precision control of magnetic field within the MSR without an accurate system model, and compared with proportional-integral-derivative (PID), the magnetic field disturbance reduction effect is improved by 2.4x. It contributes to generating a near-zero magnetic field environment with low magnetic field disturbance.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 30 条
[1]   Data-Driven Model-Free Adaptive Current Control of a Wound Rotor Synchronous Machine Drive System [J].
Aghaei Hashjin, Saeid ;
Pang, Shengzhao ;
Miliani, El-Hadj ;
Ait-Abderrahim, Karim ;
Nahid-Mobarakeh, Babak .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2020, 6 (03) :1146-1156
[2]   A magnetically shielded room with ultra low residual field and gradient [J].
Altarev, I. ;
Babcock, E. ;
Beck, D. ;
Burghoff, M. ;
Chesnevskaya, S. ;
Chupp, T. ;
Degenkolb, S. ;
Fan, I. ;
Fierlinger, P. ;
Frei, A. ;
Gutsmiedl, E. ;
Knappe-Grueneberg, S. ;
Kuchler, F. ;
Lauer, T. ;
Link, P. ;
Lins, T. ;
Marino, M. ;
McAndrew, J. ;
Niessen, B. ;
Paul, S. ;
Petzoldt, G. ;
Schlaepfer, U. ;
Schnabel, A. ;
Sharma, S. ;
Singh, J. ;
Stoepler, R. ;
Stuiber, S. ;
Sturm, M. ;
Taubenheim, B. ;
Trahms, L. ;
Voigt, J. ;
Zechlau, T. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (07)
[3]   Magnetoencephalography for brain electrophysiology and imaging [J].
Baillet, Sylvain .
NATURE NEUROSCIENCE, 2017, 20 (03) :327-339
[4]   Moving magnetoencephalography towards real-world applications with a wearable system [J].
Boto, Elena ;
Holmes, Niall ;
Leggett, James ;
Roberts, Gillian ;
Shah, Vishal ;
Meyer, Sofie S. ;
Munoz, Leonardo Duque ;
Mullinger, Karen J. ;
Tierney, Tim M. ;
Bestmann, Sven ;
Barnes, Gareth R. ;
Bowtell, Richard ;
Brookes, Matthew J. .
NATURE, 2018, 555 (7698) :657-+
[5]  
Bu XH, 2012, CONTROL ENG APPL INF, V14, P42
[6]   Numerical Modeling and Material Characterization for Multilayer Magnetically Shielded Room Design [J].
Canova, A. ;
Freschi, F. ;
Giaccone, L. ;
Repetto, M. .
IEEE TRANSACTIONS ON MAGNETICS, 2018, 54 (03)
[7]   An active disturbance rejection synchronous control strategy based on cross compensation for stepper motor XY platform [J].
Chen, Guangda ;
Xue, Ruonan ;
Song, Chao ;
Liu, Dejun ;
Ren, Letian ;
Cheng, Yanming .
MEASUREMENT & CONTROL, 2023, 56 (3-4) :694-703
[8]   A Sensorless Control System for an Implantable Heart Pump Using a Real-Time Deep Convolutional Neural Network [J].
Fetanat, Masoud ;
Stevens, Michael ;
Hayward, Christopher ;
Lovell, Nigel H. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (10) :3029-3038
[9]   Simple Neural Network Compact Form Model-Free Adaptive Controller for Thin McKibben Muscle System [J].
Hafidz, Muhamad Hazwan Abdul ;
Faudzi, Ahmad Athif Mohd ;
Norsahperi, Nor Mohd Haziq ;
Jamaludin, Mohd Najeb ;
Hamid, Dayang Tiawa Awang ;
Mohamaddan, Shahrol .
IEEE ACCESS, 2022, 10 :123410-123422
[10]   A Magnetic Compensation System Composed of Biplanar Coils Avoiding Coupling Effect of Magnetic Shielding [J].
Han, Bangcheng ;
Yang, Jianzhi ;
Zhang, Xu ;
Shi, Minxia ;
Yuan, Shuai ;
Wang, Ling .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (02) :2057-2065