Rib Fracture Segmentation Based on 3D FM-Unet

被引:1
|
作者
Zhao, Bin [1 ]
Yang, Ting [1 ]
Xin, Zhaowei [2 ]
Wang, Chunshi [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin 541004, Guangxi, Peoples R China
[2] Black Sesame Technol Co Lt, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed Tomography; Rib Fracture Segmentation; 3D FM-UNet;
D O I
10.1145/3644116.3644132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computed tomography (CT) scanning is a common method for diagnosing rib fractures. However, the shape of the fracture region obtained from CT image segmentation seriously affects the clinician's diagnosis. To solve this problem, we propose a segmentation network (3D FM-UNet) to segment CT images to obtain more accurate regions of rib fractures. The experiments show that our 3D FM-UNet achieves an average mean Dice score of 0.5452 and an average IoU of 0.3748, which exceeds the comparison methods.
引用
收藏
页码:80 / 83
页数:4
相关论文
共 50 条
  • [21] EFU Net: Edge Information Fused 3D Unet for Brain Tumor Segmentation
    Wang, Yu
    Tian, Hengyi
    Liu, Minhua
    RADIOENGINEERING, 2024, 33 (03) : 387 - 396
  • [22] ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation
    Zhang, Wang
    Chen, Shanxiong
    Ma, Yuqi
    Liu, Yu
    Cao, Xu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
  • [23] Brain Tumor Segmentation with Patch-Based 3D Attention UNet from Multi-parametric MRI
    Feng, Xue
    Bai, Harrison
    Kim, Daniel
    Maragkos, Georgios
    Machaj, Jan
    Kellogg, Ryan
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 90 - 96
  • [24] Multi-planar 3D knee MRI segmentation via UNet inspired architectures
    Sengar, Sandeep Singh
    Meulengracht, Christopher
    Boesen, Mikael Ploug
    Overgaard, Anders Fohrby
    Gudbergsen, Henrik
    Nybing, Janus Damm
    Perslev, Mathias
    Dam, Erik Bjornager
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (03) : 985 - 998
  • [25] DAUNet: A deformable aggregation UNet for multi-organ 3D medical image segmentation
    Liu, Qinghao
    Liu, Min
    Zhu, Yuehao
    Liu, Licheng
    Zhang, Zhe
    Wang, Yaonan
    PATTERN RECOGNITION LETTERS, 2025, 191 : 58 - 65
  • [26] Striking the Balance in Learning: Precision and Context in Lung Tumor Segmentation with 3D UNet Models
    Sarkar, S.
    Miao, Y.
    Teo, P. T.
    Abazeed, M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E184 - E184
  • [27] 3D density inversion of gravity anomalies based on UNet plus
    Li BoSen
    Lu BaoLiang
    An GuoQiang
    Ju, Peng
    Zhu, Wu
    Su ZiWang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2024, 67 (02): : 752 - 767
  • [28] 3D AUTOCUT: a 3D segmentation algorithm based on cellular automata
    Neto, E. C.
    Cortez, P. C.
    Rodrigues, V. E.
    Cavalcante, T. S.
    Valente, I. R. S.
    ELECTRONICS LETTERS, 2017, 53 (25) : 1640 - 1641
  • [29] 3D Model-Based Segmentation of 3D Biomedical Images
    Woerz, Stefan
    MATHEMATICAL AND ENGINEERING METHODS IN COMPUTER SCIENCE, MEMICS 2014, 2014, 8934 : 40 - 46
  • [30] 3D-Xception-UNet: An Improved Lightweight U-Net Variant for 3D Seismic Fault Segmentation
    Thanh-An Nguyen
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION TECHNOLOGY, ICIIT 2024, 2024, : 197 - 202