Data-driven analysis of temporal evolution of battery slurry in pipe systems

被引:0
|
作者
Shin, Junseop [1 ]
Oh, Hyejung [1 ]
Jung, Hyunjoon [1 ]
Park, Nayeon [1 ]
Nam, Jaewook [1 ]
Lee, Jong Min [1 ]
机构
[1] Seoul Natl Univ, Inst Chem Proc, Dept Chem & Biol Engn, 1 Gwanak Ro, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium-ion battery; Battery anode slurry; Short-Time Fourier Transform; Convolutional Neural Networks; Gradient Class Activation Map; Time series classification; ION; STATE; MICROSTRUCTURE; SUSPENSIONS; DISPERSION; PARTICLES; IMPACT;
D O I
10.1016/j.jpowsour.2024.234834
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium -ion batteries (LIBs) are considered one of the primary energy storage systems, with their electrodes playing a crucial role in battery performance. This study analyzes temporal evolution of battery anode slurry during transportation, which can result in the manufacturing of defective products, and presents an in -situ change detection methodology. From a laboratory -scale pipe system, pressure and flowrate signals are recorded during five-day transportation experiments. Considering the system's periodicity, the Short -Time Fourier Transform (STFT) is adopted to utilize both time and frequency information. Using STFT-processed data, we train a Convolutional Neural Network (CNN) classifier and successfully detect temporal variations in the transportation signals. Furthermore, through Gradient Class Activation Map (Grad -CAM) technique, distinguishing patterns for each classified data are verified. Concurrently, the slurry's rheological properties measured through daily sampling consistently exhibit gradual changes during transportation. Although we apply an arbitrary daily label as criteria of variations, hypothesizing that slurry's microstructure and subsequently rheological properties and measurement signals change over time during transportation, an accurate detection is achieved, even if there are nearly imperceptible differences in the signal data to the naked eye. This study proposes a promising methodology capable of capturing the microstructure and rheological evolution of slurries without any rheological measurements.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Multi-Level Model Reduction and Data-Driven Identification of the Lithium-Ion Battery
    Li, Yong
    Yang, Jue
    Liu, Wei Long
    Liao, Cheng Lin
    ENERGIES, 2020, 13 (15)
  • [32] A data-driven method for predicting thermal runaway propagation of battery modules considering uncertain conditions
    Ouyang, Nan
    Zhang, Wencan
    Yin, Xiuxing
    Li, Xingyao
    Xie, Yi
    He, Hancheng
    Long, Zhuoru
    ENERGY, 2023, 273
  • [33] Data-driven battery health prognosis with partial-discharge information
    Zhao, Chunyang
    Andersen, Peter Bach
    Traeholt, Chresten
    Hashemi, Seyedmostafa
    JOURNAL OF ENERGY STORAGE, 2023, 65
  • [34] Data-driven prediction of battery cycle life before capacity degradation
    Severson, Kristen A.
    Attia, Peter M.
    Jin, Norman
    Perkins, Nicholas
    Jiang, Benben
    Yang, Zi
    Chen, Michael H.
    Aykol, Muratahan
    Herring, Patrick K.
    Fraggedakis, Dimitrios
    Bazan, Martin Z.
    Harris, Stephen J.
    Chueh, William C.
    Braatz, Richard D.
    NATURE ENERGY, 2019, 4 (05) : 383 - 391
  • [35] Data-driven estimation of battery state-of-health with formation features
    He, Weilin
    Li, Dingquan
    Sun, Zhongxian
    Wang, Chenyang
    Tang, Shihai
    Chen, Jing
    Geng, Xin
    Wang, Hailong
    Liu, Zhimeng
    Hu, Linyu
    Yang, Dongchen
    Tu, Haiyan
    Lin, Yuanjing
    He, Xin
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2024, 34 (07)
  • [36] Data-Driven Hierarchical Optimal Allocation of Battery Energy Storage System
    Wan, Tong
    Tao, Yuechuan
    Qiu, Jing
    Lai, Shuying
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (04) : 2097 - 2109
  • [37] Health Prognosis for Electric Vehicle Battery Packs: A Data-Driven Approach
    Hu, Xiaosong
    Che, Yunhong
    Lin, Xianke
    Deng, Zhongwei
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (06) : 2622 - 2632
  • [38] Data-Driven Battery State of Health Estimation Based on Random Partial Charging Data
    Deng, Zhongwei
    Hu, Xiaosong
    Li, Penghua
    Lin, Xianke
    Bian, Xiaolei
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (05) : 5021 - 5031
  • [39] Research on a novel data-driven aging estimation method for battery systems in real-world electric vehicles
    Hou, Yankai
    Zhang, Zhaosheng
    Liu, Peng
    Song, Chunbao
    Wang, Zhenpo
    ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (07)
  • [40] Data-Driven Nonlinear Identification of Li-Ion Battery Based on a Frequency Domain Nonparametric Analysis
    Relan, Rishi
    Firouz, Yousef
    Timmermans, Jean-Marc
    Schoukens, Johan
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (05) : 1825 - 1832