Blending of global and regional ensembles in cycling hybrid ensemble-variational data assimilation for the convection-permitting prediction of typhoon Merbok (2017)

被引:0
作者
Qian, Xinyao [1 ]
Wang, Yuanbing [1 ]
Chen, Yaodeng [1 ]
Min, Jinzhong [1 ]
Li, Xin [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Joint Int Res Lab Climate & Environm Change ILCEC, Key Lab Meteorol Disaster,Minist Educ KLME, Nanjing 210044, Peoples R China
[2] China Meteorol Adm, Nanjing Joint Inst Atmospher Sci, Transportat Meteorol Key Lab, Nanjing 210041, Peoples R China
基金
中国国家自然科学基金;
关键词
Data assimilation; Hybrid EnVar; Large-scale; Blending; Typhoon; INITIAL CONDITION PERTURBATIONS; TROPICAL CYCLONE TRACK; LIMITED-AREA MODEL; KALMAN FILTER; CUMULUS PARAMETERIZATION; SYSTEM; SCHEME; TRANSFORM; FORECASTS; IMPLEMENTATION;
D O I
10.1016/j.atmosres.2024.107502
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Several blending approaches have been implemented in regional cycling data assimilation to introduce the largescale weather features of the global model forecast or analysis effectively into regional model forecasts. While in previous studies the blending schemes for data assimilation have generally been applied in stand-alone variational data assimilation systems, here we incorporate the new large-scale ensemble blending schemes into the regional hybrid ensemble -variational (EnVar) data assimilation system. It uses a low-pass Raymond tangent implicit filter to introduce the large-scale background or analysis information from global ensembles. Five parallel cycling hybrid ensemble -variational data assimilation experiments for the convection -permitting prediction of typhoon Merbok in 2017 show that the large-scale ensemble information from Global Ensemble Forecast System (GEFS) can suppress cumulative error growth in data assimilation cycles. On the other hand, the large-scale part of the global ensemble improves the typhoon track and intensity forecasts, possibly due to a better description of the horizontal and vertical structure of the typhoon. In addition, the blending scheme using global ensemble analysis provides more accurate rainfall forecasts of typhoon than the other blending schemes.
引用
收藏
页数:17
相关论文
共 62 条
[41]  
TIEDTKE M, 1989, MON WEATHER REV, V117, P1779, DOI 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO
[42]  
2
[43]  
von Storch H, 2000, MON WEATHER REV, V128, P3664, DOI 10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO
[44]  
2
[45]  
Waldron KM, 1996, MON WEATHER REV, V124, P529, DOI 10.1175/1520-0493(1996)124<0529:SOASFA>2.0.CO
[46]  
2
[47]   A scale-dependent blending scheme for WRFDA: impact on regional weather forecasting [J].
Wang, H. ;
Huang, X-Y. ;
Xu, D. ;
Liu, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2014, 7 (04) :1819-1828
[48]   A comparison of hybrid ensemble transform Kalman filter-optimum interpolation and ensemble square root filter analysis schemes [J].
Wang, Xuguang ;
Hamill, Thomas A. ;
Whitaker, Jeffrey S. ;
Bishop, Craig H. .
MONTHLY WEATHER REVIEW, 2007, 135 (03) :1055-1076
[49]   GSI 3DVar-Based Ensemble-Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments [J].
Wang, Xuguang ;
Parrish, David ;
Kleist, Daryl ;
Whitaker, Jeffrey .
MONTHLY WEATHER REVIEW, 2013, 141 (11) :4098-4117
[50]   A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment [J].
Wang, Xuguang ;
Barker, Dale M. ;
Snyder, Chris ;
Hamill, Thomas M. .
MONTHLY WEATHER REVIEW, 2008, 136 (12) :5116-5131