Precision classification and quantitative analysis of bacteria biomarkers via surface-enhanced Raman spectroscopy and machine learning

被引:14
作者
Kumar, Amit [1 ]
Islam, Md Redwan [2 ]
Zughaier, Susu M. [3 ]
Chen, Xianyan [4 ]
Zhao, Yiping [1 ]
机构
[1] Univ Georgia, Dept Phys & Astron, Athens, GA 30602 USA
[2] Univ Georgia, Sch Comp, Athens, GA 30602 USA
[3] Qatar Univ, Coll Med, Dept Basic Med Sci, QU Hlth, POB 2731, Doha, Qatar
[4] Univ Georgia, Dept Stat, Athens, GA 30602 USA
关键词
Surface enhanced Raman scattering (SERS); Silver nanorod array; Biomarkers; Machine learning; VIBRIO-PARAHAEMOLYTICUS; PSEUDOMONAS-AERUGINOSA; PATHOGENIC BACTERIA; SERS; SCATTERING; INFECTIONS; SPECTRA; ASSAY;
D O I
10.1016/j.saa.2024.124627
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The SERS spectra of six bacterial biomarkers, 2,3-DHBA, 2,5-DHBA, Pyocyanin, lipoteichoic acid (LTA), Enterobactin, and beta-carotene, of various concentrations, were obtained from silver nanorod array substrates, and the spectral peaks and the corresponding vibrational modes were identified to classify different spectra. The spectral variations in three different concentration regions due to various reasons have imposed a challenge to use classic calibration curve methods to quantify the concentration of biomarkers. Depending on baseline removal strategy, i.e., local or global baseline removal, the calibration curve differed significantly. With the aid of convolutional neural network (CNN), a two-step process was established to classify and quantify biomarker solutions based on SERS spectra: using a specific CNN model, a remarkable differentiation and classification accuracy of 99.99 % for all six biomarkers regardless of the concentration can be achieved. After classification, six regression CNN models were established to predict the concentration of biomarkers, with coefficient of determination R-2 > 0.97 and mean absolute error (MAE) < 0.27. The feature of important calculations indicates the high classification and quantification accuracies were due to the intrinsic spectral features in SERS spectra. This study showcases the synergistic potential of SERS and advanced machine learning algorithms and holds significant promise for bacterial infection diagnostics.
引用
收藏
页数:12
相关论文
共 74 条
[1]   The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis [J].
Aguilar, Gisela Robles ;
Swetschinski, Lucien R. ;
Weaver, Nicole Davis ;
Ikuta, Kevin S. ;
Mestrovic, Tomislav ;
Gray, Authia P. ;
Chung, Erin ;
Wool, Eve E. ;
Han, Chieh ;
Hayoon, Anna Gershberg ;
Araki, Daniel T. ;
Abdollahi, Ashkan ;
Abu-Zaid, Ahmed ;
Adnan, Mohammad ;
Agarwal, Ramesh ;
Dehkordi, Javad Aminian ;
Aravkin, Aleksandr Y. ;
Areda, Demelash ;
Azzam, Ahmed Y. ;
Berezin, Eitan N. ;
Bhagavathula, Akshaya Srikanth ;
Bhutta, Zulfiqar A. ;
Bhuyan, Soumitra S. ;
Browne, Annie J. ;
Castaneda-Orjuela, Carlos A. ;
Chandrasekar, Eeshwar K. ;
Ching, Patrick R. ;
Dai, Xiao-chen ;
Darmstadt, Gary L. ;
De la Hoz, Fernando Pio ;
Diao, Nancy ;
Diaz, Daniel ;
dos Santos, Wendel Mombaque ;
Eyre, David ;
Garcia, Coralith ;
Haines-Woodhouse, Georgina ;
Hassen, Mohammed Bheser ;
Henry, Nathaniel J. ;
Hopkins, Susan ;
Hossain, Md Mahbub ;
Iregbu, Kenneth Chukwuemeka ;
Iwu, Chidozie C. D. ;
Jacobs, Jan Adriaan ;
Janko, Mark M. ;
Jones, Ronald ;
Karaye, Ibraheem M. ;
Khalil, Ibrahim A. ;
Khan, Imteyaz A. ;
Khan, Taimoor ;
Khubchandani, Jagdish .
LANCET REGIONAL HEALTH-AMERICAS, 2023, 25
[2]   Characterization of Bacteria Using Surface-Enhanced Raman Spectroscopy (SERS): Influence of Microbiological Factors on the SERS Spectra [J].
Allen, Danielle M. ;
Einarsson, Gisli G. ;
Tunney, Michael M. ;
Bell, Steven E. J. .
ANALYTICAL CHEMISTRY, 2022, 94 (26) :9327-9335
[3]   Harnessing of Artificial Intelligence for the Diagnosis and Prevention of Hospital-Acquired Infections: A Systematic Review [J].
Baddal, Buket ;
Taner, Ferdiye ;
Ozsahin, Dilber Uzun .
DIAGNOSTICS, 2024, 14 (05)
[4]  
Bassetti Matteo, 2018, Drugs Context, V7, P212527, DOI 10.7573/dic.212527
[5]  
Blaize J.F., MyJoVE Corporation2016
[6]  
BODEY GP, 1983, REV INFECT DIS, V5, P279
[7]   Digital PCR as an Emerging Tool for Monitoring of Microbial Biodegradation [J].
Cao, Yiqi ;
Yu, Miao ;
Dong, Guihua ;
Chen, Bing ;
Zhang, Baiyu .
MOLECULES, 2020, 25 (03)
[8]   SERS Detection of Biomolecules by Highly Sensitive and Reproducible Raman-Enhancing Nanoparticle Array [J].
Chan, Tzu-Yi ;
Liu, Ting-Yu ;
Wang, Kuan-Syun ;
Tsai, Kun-Tong ;
Chen, Zhi-Xin ;
Chang, Yu-Chi ;
Tseng, Yi-Qun ;
Wang, Chih-Hao ;
Wang, Juen-Kai ;
Wang, Yuh-Lin .
NANOSCALE RESEARCH LETTERS, 2017, 12
[9]   Surface-Enhanced Raman Spectroscopic Detection of a Bacteria Biomarker Using Gold Nanoparticle Immobilized Substrates [J].
Cheng, Han-Wen ;
Huan, Shuang-Yan ;
Wu, Hai-Long ;
Shen, Guo-Li ;
Yu, Ru-Qin .
ANALYTICAL CHEMISTRY, 2009, 81 (24) :9902-9912
[10]   SERS-based sensor with a machine learning based effective feature extraction technique for fast detection of colistin-resistant Klebsiella pneumoniae [J].
Ciloglu, Fatma Uysal ;
Hora, Mehmet ;
Gundogdu, Aycan ;
Kahraman, Mehmet ;
Tokmakci, Mahmut ;
Aydin, Omer .
ANALYTICA CHIMICA ACTA, 2022, 1221