Automated Segmentation and Classification of Knee Synovitis Based on MRI Using Deep Learning

被引:6
作者
Wang, Qizheng [1 ]
Yao, Meiyi [2 ]
Song, Xinhang [2 ]
Liu, Yandong [3 ]
Xing, Xiaoying [1 ]
Chen, Yongye [1 ]
Zhao, Fangbo [4 ]
Liu, Ke [1 ]
Cheng, Xiaoguang [3 ]
Jiang, Shuqiang [2 ]
Lang, Ning [1 ]
机构
[1] Peking Univ Third Hosp, Dept Radiol, 49 North Garden Rd,Haidian Dist, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
[3] Beijing Jishuitan Hosp, Dept Radiol, 31 Xinjiekou East St, Beijing, Peoples R China
[4] Peking Univ, 5 Yiheyuan Rd Haidian Dist, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Knee; Synovitis; Magnetic resonance imaging; Deep learning; Diagnosis; RESONANCE; OSTEOARTHRITIS; PROGRESSION;
D O I
10.1016/j.acra.2023.10.036
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: To develop a deep learning (DL) model for segmentation of the suprapatellar capsule (SC) and infrapatellar fat pad (IPFP) based on sagittal proton density-weighted images and to distinguish between three common types of knee synovitis. Materials and Methods: This retrospective study included 376 consecutive patients with pathologically confirmed knee synovitis (rheumatoid arthritis, gouty arthritis, and pigmented villonodular synovitis) from two institutions. A semantic segmentation model was trained on manually annotated sagittal proton density-weighted images. The segmentation results of the regions of interest and patients' sex and age were used to classify knee synovitis after feature processing. Classification by the DL method was compared to the classification performed by radiologists. Results: Data of the 376 patients (mean age, 42 +/- 15 years; 216 men) were separated into a training set ( n = 233), an internal test set ( n = 93), and an external test set ( n = 50). The automated segmentation model showed good performance (mean accuracy: 0.99 and 0.99 in the internal and external test sets). On the internal test set, the DL model performed better than the senior radiologist (accuracy: 0.86 vs. 0.79; area under the curve [AUC]: 0.83 vs. 0.79). On the external test set, the DL diagnostic model based on automatic segmentation performed as well or better than senior and junior radiologists (accuracy: 0.79 vs. 0.79 vs. 0.73; AUC: 0.76 vs. 0.77 vs. 0.70). Conclusion: DL models for segmentation of SC and IPFD can accurately classify knee synovitis and aid radiologic diagnosis.
引用
收藏
页码:1518 / 1527
页数:10
相关论文
共 37 条
[1]   Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies [J].
Astuto, Bruno ;
Flament, Io ;
Namiri, Nikan K. ;
Shah, Rutwik ;
Bharadwaj, Upasana ;
Link, Thomas M. ;
Bucknor, Matthew D. ;
Pedoia, Valentina ;
Majumdar, Sharmila .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2021, 3 (03)
[2]  
Berruto M, 2016, Arthroscopy: Basic to Advanced, P373
[3]  
Chen T., XGBOOST SCALABLE TRE
[4]   The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review [J].
Clockaerts, S. ;
Bastiaansen-Jenniskens, Y. M. ;
Runhaar, J. ;
Van Osch, G. J. V. M. ;
Van Offel, J. F. ;
Verhaar, J. A. N. ;
De Clerck, L. S. ;
Somville, J. .
OSTEOARTHRITIS AND CARTILAGE, 2010, 18 (07) :876-882
[5]   Quantitative magnetic resonance imaging of the knee: A method of measuring response to intra-articular treatments [J].
Creamer, P ;
Keen, M ;
Zananiri, F ;
Waterton, JC ;
Maciewicz, RA ;
Oliver, C ;
Dieppe, P ;
Watt, I .
ANNALS OF THE RHEUMATIC DISEASES, 1997, 56 (06) :378-381
[6]   Effusion-synovitis and infrapatellar fat pad signal intensity alteration differentiate accelerated knee osteoarthritis [J].
Davis, Julie E. ;
Ward, Robert J. ;
MacKay, James W. ;
Lu, Bing ;
Price, Lori Lyn ;
McAlindon, Timothy E. ;
Eaton, Charles B. ;
Barbe, Mary F. ;
Lo, Grace H. ;
Harkey, Matthew S. ;
Driban, Jeffrey B. .
RHEUMATOLOGY, 2019, 58 (03) :418-426
[7]   Infrapatellar Fat Pad-Synovial Membrane Anatomo-Fuctional Unit: Microscopic Basis for Piezo1/2 Mechanosensors Involvement in Osteoarthritis Pain [J].
Emmi, Aron ;
Stocco, Elena ;
Boscolo-Berto, Rafael ;
Contran, Martina ;
Belluzzi, Elisa ;
Favero, Marta ;
Ramonda, Roberta ;
Porzionato, Andrea ;
Ruggieri, Pietro ;
De Caro, Raffaele ;
Macchi, Veronica .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2022, 10
[8]   The interactions between MRI-detected osteophytes and bone marrow lesions or effusion-synovitis on knee symptom progression: an exploratory study [J].
Fan, T. ;
Ruan, G. ;
Antony, B. ;
Cao, P. ;
Li, J. ;
Han, W. ;
Li, Y. ;
Yung, S. N. ;
Wluka, A. E. ;
Winzenberg, T. ;
Cicuttini, F. ;
Ding, C. ;
Zhu, Z. .
OSTEOARTHRITIS AND CARTILAGE, 2021, 29 (09) :1296-1305
[9]  
Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771
[10]   Artificial neural networks (the multilayer perceptron) - A review of applications in the atmospheric sciences [J].
Gardner, MW ;
Dorling, SR .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (14-15) :2627-2636