Development of a Low-Cost 3D Mapping Technology with 2D LIDAR for Path Planning Based on the A* Algorithm

被引:0
作者
Ferreira, Edilson [1 ,2 ]
Grilo, Vinicius [1 ,2 ]
Braun, Joao [1 ,3 ,4 ,5 ]
Santos, Murillo [2 ]
Pereira, Ana I. [1 ,3 ]
Costa, Paulo [4 ,5 ]
Lima, Jose [1 ,3 ,4 ]
机构
[1] Inst Politecn Braganca, Res Ctr Digitalizat & Intelligent Robot CeDRI, P-5300253 Braganca, Portugal
[2] Ctr Fed Educ Tecnol Minas Gerais CEFET MG, Belo Horizonte, MG, Brazil
[3] Inst Politecn Braganca, Lab Associado Sustentabilidade & Tecnol Regioes M, Campus Santa Apolonia, P-5300253 Braganca, Portugal
[4] INESC TEC, Robot & Intelligent Syst Res Grp, P-4200465 Porto, Portugal
[5] Univ Porto, FEUP Fac Engn, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
来源
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1 | 2024年 / 976卷
关键词
Path planning algorithm; A*; LiDAR;
D O I
10.1007/978-3-031-58676-7_5
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This article presents the development of a low-cost 3D mapping technology for trajectory planning using a 2D LiDAR and a stepper motor. The research covers the design and implementation of a circuit board to connect and control all components, including the LiDAR and motor. In addition, a 3D printed support structure was developed to connect the LiDAR to the motor shaft. System data acquisition and processing are addressed, as well as the generation of the point cloud and the application of the A* algorithm for trajectory planning. Experimental results demonstrate the effectiveness and feasibility of the proposed technology for low-cost 3D mapping and trajectory planning applications.
引用
收藏
页码:53 / 66
页数:14
相关论文
共 13 条
  • [1] Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset
    Behley, Jens
    Garbade, Martin
    Milioto, Andres
    Quenzel, Jan
    Behnke, Sven
    Gall, Juergen
    Stachniss, Cyrill
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2021, 40 (8-9) : 959 - 967
  • [2] SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences
    Behley, Jens
    Garbade, Martin
    Milioto, Andres
    Quenzel, Jan
    Behnke, Sven
    Stachniss, Cyrill
    Gall, Juergen
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9296 - 9306
  • [3] A Survey of Low-Cost 3D Laser Scanning Technology
    Bi, Shusheng
    Yuan, Chang
    Liu, Chang
    Cheng, Jun
    Wang, Wei
    Cai, Yueri
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [4] Volume Estimation of an Indoor Space with LiDAR Scanner
    Bierende, Jaqueline
    Braun, Joao
    Costa, Paulo
    Lima, Jose
    Pereira, Ana I.
    [J]. OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022, 2022, 1754 : 78 - 92
  • [5] CTaylor, 2010, Neato robotics xv-11 tear-down
  • [6] A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping
    Debeunne, Cesar
    Vivet, Damien
    [J]. SENSORS, 2020, 20 (07)
  • [7] Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
  • [8] Instruments T., 2010, DRV8825 Stepper Motor Controller IC Datasheet
  • [9] OpenCV, Documentation
  • [10] 3D modeling of close-range objects: Photogrammetry or laser scanning?
    Remondino, F
    Guarnieri, A
    Vettore, A
    [J]. VIDEOMETRICS VIII, 2005, 5665 : 216 - 225