MSHANet: a multi-scale residual network with hybrid attention for motor imagery EEG decoding

被引:4
作者
Li, Mengfan [1 ,2 ,3 ]
Li, Jundi [1 ,2 ,3 ]
Zheng, Xiao [2 ,3 ,4 ]
Ge, Jiahao [1 ,2 ,3 ]
Xu, Guizhi [2 ,3 ,4 ]
机构
[1] Hebei Univ Technol, Sch Hlth Sci & Biomed Engn, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin, Peoples R China
[2] Hebei Key Lab Bioelectromagnet & Neuroengn, Tianjin, Peoples R China
[3] Tianjin Key Lab Bioelectromagnet Technol & Intelli, Tianjin, Peoples R China
[4] Hebei Univ Technol, Sch Elect Engn, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain-computer interface; Multi-scale residual network; Hybrid attention; EEG decoding; Motor imagery; NEURAL-NETWORK;
D O I
10.1007/s11571-024-10127-8
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
EEG decoding plays a crucial role in the development of motor imagery brain-computer interface. Deep learning has great potential to automatically extract EEG features for end-to-end decoding. Currently, the deep learning is faced with the chanllenge of decoding from a large amount of time-variant EEG to retain a stable peroformance with different sessions. This study proposes a multi-scale residual network with hybrid attention (MSHANet) to decode four motor imagery classes. The MSHANet combines a multi-head attention and squeeze-and-excitation attention to hybridly focus on important information of the EEG features; and applies a multi-scale residual block to extracts rich EEG features, sharing part of the block parameters to extract common features. Compared with seven state-of-the-art methods, the MSHANet exhits the best accuracy on BCI Competition IV 2a with an accuracy of 83.18% for session- specific task and 80.09% for cross-session task. Thus, the proposed MSHANet decodes the time-varying EEG robustly and can save the time cost of MI-BCI, which is beneficial for long-term use.
引用
收藏
页码:3463 / 3476
页数:14
相关论文
共 45 条
[1]   Physics-Informed Attention Temporal Convolutional Network for EEG-Based Motor Imagery Classification [J].
Altaheri, Hamdi ;
Muhammad, Ghulam ;
Alsulaiman, Mansour .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) :2249-2258
[2]   A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification [J].
Altuwaijri, Ghadir Ali ;
Muhammad, Ghulam ;
Altaheri, Hamdi ;
Alsulaiman, Mansour .
DIAGNOSTICS, 2022, 12 (04)
[3]  
Bai S., EMPIRICAL EVALUATION
[4]   Closed-Loop Brain-Machine-Body Interfaces for Noninvasive Rehabilitation of Movement Disorders [J].
Broccard, Frederic D. ;
Mullen, Tim ;
Chi, Yu Mike ;
Peterson, David ;
Iversen, John R. ;
Arnold, Mike ;
Kreutz-Delgado, Kenneth ;
Jung, Tzyy-Ping ;
Makeig, Scott ;
Poizner, Howard ;
Sejnowski, Terrence ;
Cauwenberghs, Gert .
ANNALS OF BIOMEDICAL ENGINEERING, 2014, 42 (08) :1573-1593
[5]  
Brunner Clemens., 2008, Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, V16, P1
[6]   EEG-Based Anxious States Classification Using Affective BCI-Based Closed Neurofeedback System [J].
Chen, Chao ;
Yu, Xuecong ;
Belkacem, Abdelkader Nasreddine ;
Lu, Lin ;
Li, Penghai ;
Zhang, Zufeng ;
Wang, Xiaotian ;
Tan, Wenjun ;
Gao, Qiang ;
Shin, Duk ;
Wang, Changming ;
Sha, Sha ;
Zhao, Xixi ;
Ming, Dong .
JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2021, 41 (02) :155-164
[7]   Toward reliable signals decoding for electroencephalogram: A benchmark study to EEGNeX [J].
Chen, Xia ;
Teng, Xiangbin ;
Chen, Han ;
Pan, Yafeng ;
Geyer, Philipp .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
[8]   Deep learning for electroencephalogram (EEG) classification tasks: a review [J].
Craik, Alexander ;
He, Yongtian ;
Contreras-Vidal, Jose L. .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (03)
[9]   An end-to-end deep learning approach to MI-EEG signal classification for BCIs [J].
Dose, Hauke ;
Moller, Jakob S. ;
Iversen, Helle K. ;
Puthusserypady, Sadasivan .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 114 :532-542
[10]   Design of a Multimodal EEG-based Hybrid BCI System with Visual Servo Module [J].
Duan, Feng ;
Lin, Dongxue ;
Li, Wenyu ;
Zhang, Zhao .
IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2015, 7 (04) :332-341