Experimental Validation of Electrothermal and Aging Parameter Identification for Lithium-Ion Batteries

被引:1
作者
Conte, Francesco [1 ]
Giallongo, Marco [2 ]
Kaza, Daniele [3 ]
Natrella, Gianluca [3 ]
Tachibana, Ryohei [4 ]
Tsuji, Shinji [4 ]
Silvestro, Federico [3 ]
Vichi, Giovanni [2 ]
机构
[1] Campus Biomed Univ Rome, Dept Engn, Via Alvaro Portillo 21, I-00128 Rome, Italy
[2] Yanmar R&D Europe SRL, Viale Galileo 3-A, I-50125 Florence, Italy
[3] Univ Genoa, Dipartimento Ingn Navale Elettr Elettron & Telecom, Via allOpera Pia 11a, I-16145 Genoa, Italy
[4] Yanmar Holdings Co Ltd, 2481 Umegahara, Maibara, Shiga 5218511, Japan
关键词
Li-ion battery degradation; semi-empirical model; parameter identification; performance and lifetime prediction; SINGLE-PARTICLE MODEL; ELECTROCHEMICAL MODEL; ELECTROLYTE; DEGRADATION; ENERGY; STATE;
D O I
10.3390/en17102269
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Modeling and predicting the long-term performance of Li-ion batteries is crucial for the effective design and efficient operation of integrated energy systems. In this paper, we introduce a comprehensive semi-empirical model for Li-ion cells, capturing electrothermal and aging features. This model replicates the evolution of cell voltage, capacity, and internal resistance, in relation to the cell actual operating conditions, and estimates the ongoing degradation in capacity and internal resistance due to the battery use. Thus, the model articulates into two sub-models, an electrothermal one, describing the battery voltage, and an aging one, computing the ongoing degradation. We first propose an approach to identify the parameters of both sub-models. Then, we validate the identification procedure and the accuracy of the electrothermal and aging models through an experimental campaign, also comprising two real cycle load tests at different temperatures, in which real measurements collected from real Li-ion cells are used. The overall model demonstrates good performances in simulating battery characteristics and forecasting degradation. The results show a Mean Absolute Percentage Error (MAPE) lower than 1% for battery voltage and capacity, and a maximum absolute error on internal resistance that is on par with the most up-to-date empirical models. The proposed approach is therefore well-suited for implementation in system modeling, and can be employed as an informative tool for enhancing battery design and operational strategies.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Parameter identification and identifiability analysis of lithium-ion batteries
    Choi, Yun Young
    Kim, Seongyoon
    Kim, Kyunghyun
    Kim, Sanghyun
    Choi, Jung-Il
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (02) : 488 - 506
  • [2] Accurate Model Parameter Identification to Boost Precise Aging Prediction of Lithium-Ion Batteries: A Review
    Ding, Shicong
    Li, Yiding
    Dai, Haifeng
    Wang, Li
    He, Xiangming
    ADVANCED ENERGY MATERIALS, 2023, 13 (39)
  • [3] Experimental Validation of the Aging Model of Lithium-Ion Batteries Regardless of Deterioration Conditions
    Kharche, Nitin A.
    Singh, Praveen
    Soni, N. B.
    Vekariya, Daxa
    Patil, Harshal
    Maranan, Ramya
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [4] Charging Pattern Optimization for Lithium-Ion Batteries With an Electrothermal Aging Model
    Liu, Kailong
    Zou, Changfu
    Li, Kang
    Wik, Torsten
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (12) : 5463 - 5474
  • [5] Fractional-order modeling and parameter identification for lithium-ion batteries
    Wang, Baojin
    Li, Shengbo Eben
    Peng, Huei
    Liu, Zhiyuan
    JOURNAL OF POWER SOURCES, 2015, 293 : 151 - 161
  • [6] Parameter identification of fractional-order model with transfer learning for aging lithium-ion batteries
    Guo, Dongxu
    Yang, Geng
    Han, Xuebing
    Feng, Xuning
    Lu, Languang
    Ouyang, Minggao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (09) : 12825 - 12837
  • [7] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Ma, Yan
    Ru, Jingpei
    Yin, Mingyue
    Chen, Hong
    Zheng, Weitao
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (11) : 1119 - 1131
  • [8] Analysis of Aging in Lithium-ion Batteries: Fundamental Modeling and Parameter Investigation
    Oh, Hyejung
    Shin, Junseop
    Kang, Taekyu
    Kim, Woosung
    Lee, Jong Min
    IFAC PAPERSONLINE, 2024, 58 (14): : 500 - 505
  • [9] A Review of Parameter Identification and State of Power Estimation Methods for Lithium-Ion Batteries
    Ma, Changlong
    Wu, Chao
    Wang, Luoya
    Chen, Xueyang
    Liu, Lili
    Wu, Yuping
    Ye, Jilei
    PROCESSES, 2024, 12 (10)
  • [10] Parameter Identification Method for a Fractional-Order Model of Lithium-Ion Batteries Considering Electrolyte-Phase Diffusion
    Jia, Yanbo
    Dong, Lei
    Yang, Geng
    Jin, Feng
    Lu, Languang
    Guo, Dongxu
    Ouyang, Minggao
    BATTERIES-BASEL, 2022, 8 (08):