Hopf bifurcation and optimal control of a delayed reaction-diffusion brucellosis disease model

被引:0
作者
Ma, An [1 ,2 ]
Hu, Jing [1 ,2 ]
Li, Xining [1 ,2 ]
Xu, Xinzhong [1 ,2 ]
Zhang, Qimin [1 ]
机构
[1] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
[2] Ningxia Univ, Ningxia Basic Sci Res Ctr Math, Yinchuan 750021, Peoples R China
关键词
Brucellosis disease model; Hopf bifurcation; optimal control; discrete time delay; reaction-diffusion; TRANSMISSION DYNAMICS; SHEEP BRUCELLOSIS; GLOBAL DYNAMICS; JILIN PROVINCE; STABILITY; CATTLE;
D O I
10.1142/S1793524524500608
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a brucellosis disease model with reaction-diffusion and time delay. The model takes into account both the direct and indirect transmission of infected animals and pathogens in the environment. By analyzing the associated characteristic equation, the local stability of the unique positive equilibrium point is established. The existence of Hopf bifurcations at the positive equilibrium point is also examined by considering the discrete time delay as a bifurcation parameter. Additionally, an optimal control analysis is conducted to minimize disease outbreaks and control costs. This includes reducing the exposure of susceptible animals to infected animals, removing infected animals from herds, and reducing emissions of brucella into the environment. By constructing Hamiltonian function and applying Pontryagin's maximum principle, the necessary conditions for the existence of optimal control are given. Finally, the existence of bifurcation periodic solutions and the effectiveness of control strategies are illustrated through numerical simulations.
引用
收藏
页数:30
相关论文
共 46 条
[1]   Mathematical analysis of the transmission dynamics of brucellosis among bison [J].
Abatih, Emmanuel ;
Ron, Lenin ;
Speybroeck, Niko ;
Williams, Brian ;
Berkvens, Dirk .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (17) :3818-3832
[2]  
Ainseba Bedr'Eddine, 2010, Journal of Biological Dynamics, V4, P2, DOI 10.1080/17513750903171688
[3]   Perspectives for the treatment of brucellosis in the 21st century: The ioannina recommendations [J].
Ariza, Javier ;
Bosilkovski, Mile ;
Cascio, Antonio ;
Colmenero, Juan D. ;
Corbel, Michael J. ;
Falagas, Matthew E. ;
Memish, Ziad A. ;
Roushan, Mohammad Reza Hasanjani ;
Rubinstein, Ethan ;
Sipsas, Nikolaos V. ;
Solera, Javier ;
Young, Edward J. ;
Pappas, Georgios .
PLOS MEDICINE, 2007, 4 (12) :1872-1878
[4]   Optimal control of an epidemiological model with multiple time delays [J].
Bashier, Eihab B. M. ;
Patidar, Kailash C. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 :47-56
[5]   Brucellosis: a worldwide zoonosis [J].
Boschiroli, ML ;
Foulongne, V ;
O'Callaghan, D .
CURRENT OPINION IN MICROBIOLOGY, 2001, 4 (01) :58-64
[6]   Brucellosis: An overview [J].
Corbel, MJ .
EMERGING INFECTIOUS DISEASES, 1997, 3 (02) :213-221
[7]   The population dynamics of brucellosis in the Yellowstone National Park [J].
Dobson, A ;
Meagher, M .
ECOLOGY, 1996, 77 (04) :1026-1036
[8]  
Doganay Mehmet, 2003, International Journal of Infectious Diseases, V7, P173, DOI 10.1016/S1201-9712(03)90049-X
[9]  
Fleming W.H., 2012, Deterministic and Stochastic Optimal Control, DOI [10.1007/978- 1-4612-6380-7, DOI 10.1007/978-1-4612-6380-7]
[10]   Brucellosis in wildlife [J].
Godfroid, J .
REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 2002, 21 (02) :277-286