Sobolev orthogonal polynomials and spectral methods in boundary value problems

被引:4
作者
Fernandez, Lidia [1 ]
Marcellan, Francisco [2 ]
Perez, Teresa E. [1 ]
Pinar, Miguel A. [1 ]
机构
[1] Univ Granada, Inst Matemat & Dept Matemat Aplicada, Granada 18071, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
关键词
Jacobi polynomials; Sobolev orthogonal polynomials; Connection formulas; Asymptotic properties; Spectral methods and boundary value; problems; Fourier expansions; COHERENT PAIRS; ASYMPTOTICS;
D O I
10.1016/j.apnum.2023.07.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the variational formulation of a boundary value problem for the harmonic oscillator, Sobolev inner products appear in a natural way. First, we study the sequences of Sobolev orthogonal polynomials with respect to such an inner product. Second, their representations in terms of a sequence of Gegenbauer polynomials are deduced as well as an algorithm to generate them in a recursive way is stated. The outer relative asymptotics between the Sobolev orthogonal polynomials and classical Legendre polynomials is obtained. Next we analyze the solution of the boundary value problem in terms of a Fourier-Sobolev projector. Finally, we provide numerical tests concerning the reliability and accuracy of the Sobolev spectral method. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of IMACS.
引用
收藏
页码:254 / 272
页数:19
相关论文
共 19 条
[1]   Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems [J].
Ai, Qing ;
Li, Hui-yuan ;
Wang, Zhong-qing .
APPLIED NUMERICAL MATHEMATICS, 2018, 127 :196-210
[2]  
Bernardi C., 1997, Handbook of Numerical Analysis, VV, P209, DOI [10.1016/s1570-8659(97)80003-8, DOI 10.1016/S1570-8659(97)80003-8, 10.1016/S1570-8659(97)80003-8]
[3]  
Bernardi C., 1992, MATH APPL, V10
[4]  
Canuto C., 2006, SCIENTIF COMPUT, DOI [10.1007/978-3-540-30728-0, DOI 10.1007/978-3-540-30728-0]
[5]  
Chihara T.S., 1978, An introduction to orthogonal polynomials, V13
[6]   Sobolev orthogonal polynomials and (M, N)-coherent pairs of measures [J].
de Jesus, M. N. ;
Petronilho, J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) :83-101
[7]  
Gautschi W., 2004, Orthogonal polynomials: computation and approximation, DOI DOI 10.1093/OSO/9780198506720.001.0001
[8]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[9]  
ISERLES A, 1990, ALGORITHMS FOR APPROXIMATION II, P117
[10]   Generalized coherent pairs [J].
Kwon, KH ;
Lee, JH ;
Marcellán, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (02) :482-514