Automatic Segmentation of Cardiac Structures from 2D Echocardiographic Images using Transformers

被引:0
作者
Chel, Anne [1 ]
Gonggrijp, Mats [1 ]
Kyriacou, Victor [1 ]
Guiberteau, Ictor Retamal [2 ]
Moreno, Laura Latorre [2 ]
Awasthi, Navchetan [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Amsterdam, Netherlands
来源
PROCEEDINGS OF THE 2024 IEEE SOUTH ASIAN ULTRASONICS SYMPOSIUM, SAUS 2024 | 2024年
关键词
Segmentation; Transformers; Ultrasound imaging; Deep Learning; Echocardiography;
D O I
10.1109/SAUS61785.2024.10563657
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Segmentation of cardiac structures (CS) in echocardiographic images is an important step for coronary heart disease (CHD) diagnosis. Manual or semi-automatic delineation of CS is often time-consuming and prone to intra- and inter-observer variability. Thus, we propose to use a transformer based model for the automatic segmentation of CS in 2D echocardiographic frames of patients with a pathological risk of CHD. We analyse the performance of this model with different data augmentation settings, and suggest that there is an improved performance compared to the baseline UNet model. We conclude that the results could be accurate enough for bringing this automatic segmentation method of CS into clinical routine for CHD diagnosis.
引用
收藏
页数:4
相关论文
共 12 条
  • [1] Bhandari B, 2022, ISCHEMIC CARDIOMYOPA
  • [2] Bridge CP, 2015, I S BIOMED IMAGING, P156, DOI 10.1109/ISBI.2015.7163839
  • [3] Deep Learning for Cardiac Image Segmentation: A Review
    Chen, Chen
    Qin, Chen
    Qiu, Huaqi
    Tarroni, Giacomo
    Duan, Jinming
    Bai, Wenjia
    Rueckert, Daniel
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [4] clevelandclinic, Ejection Fraction: What It Is, Types and Normal Range
  • [5] Cui X., 2022, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, VPP
  • [6] Gao YH, 2022, Arxiv, DOI [arXiv:2203.00131, DOI 10.48550/ARXIV.2203.00131]
  • [7] Gao Yunhe, 2021, arXiv, DOI DOI 10.48550/ARXIV.2107.00781
  • [8] Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study
    Khan, Moien A. B.
    Hashim, Muhammad Jawad
    Mustafa, Halla
    Baniyas, May Yousif
    Al Suwaidi, Shaikha Khalid Buti Mohamad
    AlKatheeri, Rana
    Alblooshi, Fatmah Mohamed Khalfan
    Almatrooshi, Meera Eisa Ali Hassan
    Alzaabi, Mariam Eisa Hazeem
    Al Darmaki, Reem Saif
    Lootah, Shamsa Nasser Ali Hussain
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (07)
  • [9] Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
    Lang, Roberto M.
    Badano, Luigi P.
    Mor-Avi, Victor
    Afilalo, Jonathan
    Armstrong, Anderson
    Ernande, Laura
    Flachskampf, Frank A.
    Foster, Elyse
    Goldstein, Steven A.
    Kuznetsova, Tatiana
    Lancellotti, Patrizio
    Muraru, Denisa
    Picard, Michael H.
    Rietzschel, Ernst R.
    Rudski, Lawrence
    Spencer, Kirk T.
    Tsang, Wendy
    Voigt, Jens-Uwe
    [J]. EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2015, 16 (03) : 233 - 271
  • [10] Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography
    Leclerc, Sarah
    Smistad, Erik
    Pedrosa, Joao
    Ostvik, Andreas
    Cervenansky, Frederic
    Espinosa, Florian
    Espeland, Torvald
    Berg, Erik Andreas Rye
    Jodoin, Pierre-Marc
    Grenier, Thomas
    Lartizien, Carole
    D'hooge, Jan
    Lovstakken, Lasse
    Bernard, Olivier
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (09) : 2198 - 2210