Tilings of Z with multisets of distances

被引:0
作者
Kupavskii, Andrey [1 ]
Popova, Elizaveta [1 ]
机构
[1] Moscow Inst Phys & Technol, Moscow, Russia
关键词
Tiling; One-dimensional tiling; INTEGERS;
D O I
10.1016/j.disc.2024.114053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study tilings of Z , that is, coverings of Z by disjoint sets (tiles). Let T = { d 1 , ... , d s } be a given multiset of distances. Is it always possible to tile Z by tiles, for which the multiset of distances between consecutive points is equal to T ? In this paper, we give a sufficient condition that such a tiling exists. Our result allows multisets of distances to have arbitrarily many distinct values. Our result generalizes most of the previously known results, all of which dealt with the cases of 2 or 3 distinct distances. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 11 条
[1]  
Bhattacharya S, 2020, AM J MATH, V142, P255
[2]   On Covering by Translates of a Set [J].
Bollobas, Bela ;
Janson, Svante ;
Riordan, Oliver .
RANDOM STRUCTURES & ALGORITHMS, 2011, 38 (1-2) :33-67
[3]   On tiling the integers with 4-sets of the same gap sequence [J].
Choi, Ilkyoo ;
Jung, Junehyuk ;
Kim, Minki .
DISCRETE MATHEMATICS, 2018, 341 (04) :957-964
[4]   Tiling the integers with translates of one finite set [J].
Coven, EM ;
Meyerowitz, A .
JOURNAL OF ALGEBRA, 1999, 212 (01) :161-174
[5]   SOLUTION TO A CONJECTURE OF SCHMIDT AND TULLER ON ONE-DIMENSIONAL PACKINGS AND COVERINGS [J].
Frankl, N. O. R. A. ;
Kupavskii, A. N. D. R. E. Y. ;
Sagdeev, A. R. S. E. N., II .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) :2353-2362
[6]   Tiling with arbitrary tiles [J].
Gruslys, Vytautas ;
Leader, Imre ;
Tan, Ta Sheng .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 112 :1019-1039
[7]  
Honsberger R, 1976, Mathematical Gems II, the Dolciani Mathematical Expositions, P84
[8]   One-dimensional tilings using tiles with two gap lengths [J].
Nakamigawa, T .
GRAPHS AND COMBINATORICS, 2005, 21 (01) :97-105
[9]  
NEWMAN DJ, 1967, MICH MATH J, V14, P481
[10]   TESSELATION OF INTEGERS [J].
NEWMAN, DJ .
JOURNAL OF NUMBER THEORY, 1977, 9 (01) :107-111