Outliers Detection by Signal Subspace Matching

被引:1
作者
Wax, Mati [1 ]
Adler, Amir [2 ]
机构
[1] Technion Israel Inst Technol, IL-3200003 Haifa, Israel
[2] MIT, Cambridge, MA 02139 USA
关键词
Vectors; Measurement; Coherence; Noise; Anomaly detection; Sparse matrices; Principal component analysis; Outlier detection; robust subspace recovery; coherence metric; signal subspace matching; ROBUST-PCA; MATRIX DECOMPOSITION; SPARSE; CLASSIFICATION;
D O I
10.1109/TSP.2024.3394652
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel solution to the problem of subspace outlier detection that does not assume prior knowledge of the number of outliers nor the dimension of the inliers subspace. The solution is based on the recently introduced notion of soft projection for capturing the inliers subspace, and on the recently introduced signal subspace matching (SSM) metric for measuring the distance between the given vectors and the inliers subspace. The solution handles both unstructured and structured outliers and a relatively large ratio of outliers to inliers. Experimental results, demonstrating the performance of the SSM solution, are included.
引用
收藏
页码:2498 / 2511
页数:14
相关论文
共 39 条
[1]   Classification of Hyperspectral Images Using Subspace Projection Feature Space [J].
Aghaee, Reza ;
Mokhtarzade, Mehdi .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (09) :1803-1807
[2]  
Ashari R, 2014, 2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BRAIN COMPUTER INTERFACES (CIBCI), P57, DOI 10.1109/CIBCI.2014.7007793
[3]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[4]   RANK-SPARSITY INCOHERENCE FOR MATRIX DECOMPOSITION [J].
Chandrasekaran, Venkat ;
Sanghavi, Sujay ;
Parrilo, Pablo A. ;
Willsky, Alan S. .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (02) :572-596
[5]  
Cherapanamjeri Y., 2017, C LEARN THEOR, P593
[6]   Robust Sparse Principal Component Analysis [J].
Croux, Christophe ;
Filzmoser, Peter ;
Fritz, Heinrich .
TECHNOMETRICS, 2013, 55 (02) :202-214
[7]   A Framework for Robust Subspace Learning [J].
Fernando De la Torre ;
Michael J. Black .
International Journal of Computer Vision, 2003, 54 (1-3) :117-142
[8]  
Ding C., 2006, P INT C MACH LEARN, P281, DOI DOI 10.1145/1143844.1143880
[9]   Sparse Subspace Clustering: Algorithm, Theory, and Applications [J].
Elhamifar, Ehsan ;
Vidal, Rene .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) :2765-2781
[10]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395