On the construction of diagonally implicit two-step peer methods with RK stability

被引:2
|
作者
Sharifi, M. [1 ]
Abdi, A. [1 ,2 ]
Hojjati, G. [1 ,2 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
关键词
Ordinary differential equation; Stiff problems; Two-step peer methods; Runge-Kutta stability; RUNGE-KUTTA METHODS; W-METHODS;
D O I
10.1016/j.apnum.2023.12.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, diagonally implicit two-step peer methods for the numerical solution of initial value problems of order ordinary differential are divided into four types including the combination of explicit and implicit methods in a sequential or parallel environments. In this class of the methods, construction of implicit methods equipped with Runge-Kutta stability property together with A- or L-stability are investigated and examples of such methods are given up to order five. Finally, the efficiency and accuracy of the proposed methods are verified by applying them on some well-known stiff problems.
引用
收藏
页码:138 / 147
页数:10
相关论文
共 50 条
  • [1] Implicit-explicit two-step peer methods with RK stability for implicit part
    Sharifi, Mohammad
    Abdi, Ali
    Hojjati, Gholamreza
    Mousavi, Aida
    NUMERICAL ALGORITHMS, 2025, 98 (04) : 2145 - 2170
  • [2] Two-step diagonally-implicit collocation based methods for Volterra Integral Equations
    Conte, Dajana
    D'Ambrosio, Raffaele
    Paternoster, Beatrice
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1312 - 1324
  • [3] A SINGLY DIAGONALLY IMPLICIT TWO-STEP PEER TRIPLE WITH GLOBAL ERROR CONTROL FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS
    Kulikov, G. Yu.
    Weiner, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03): : A1593 - A1613
  • [4] Explicit two-step peer methods
    Weiner, Ruediger
    Biermann, Katja
    Schmitt, Bernhard A.
    Podhaisky, Helmut
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (04) : 609 - 619
  • [5] Two-step peer methods with continuous output
    Bernhard A. Schmitt
    Rüdiger Weiner
    Steffen Beck
    BIT Numerical Mathematics, 2013, 53 : 717 - 739
  • [6] Adapted explicit two-step peer methods
    Conte, Dajana
    D'Ambrosio, Raffaele
    Moccaldi, Martina
    Paternoster, Beatrice
    JOURNAL OF NUMERICAL MATHEMATICS, 2019, 27 (02) : 69 - 83
  • [7] Superconvergent explicit two-step peer methods
    Weiner, Ruediger
    Schmitt, Bernhard A.
    Podhaisky, Helmut
    Jebens, Stefan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (02) : 753 - 764
  • [8] On the derivation of explicit two-step peer methods
    Calvo, M.
    Montijano, J. I.
    Randez, L.
    Van Daele, M.
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (04) : 395 - 409
  • [9] Two-step peer methods with continuous output
    Schmitt, Bernhard A.
    Weiner, Ruediger
    Beck, Steffen
    BIT NUMERICAL MATHEMATICS, 2013, 53 (03) : 717 - 739
  • [10] On the implementation of explicit two-step peer methods with Runge-Kutta stability
    Abdi, A.
    Hojjati, G.
    Jackiewicz, Z.
    Podhaisky, H.
    Sharifi, M.
    APPLIED NUMERICAL MATHEMATICS, 2023, 186 : 213 - 227