DEAttentionDTA: protein-ligand binding affinity prediction based on dynamic embedding and self-attention

被引:0
|
作者
Chen, Xiying [1 ]
Huang, Jinsha [1 ]
Shen, Tianqiao [1 ]
Zhang, Houjin [1 ]
Xu, Li [1 ]
Yang, Min [1 ]
Xie, Xiaoman [1 ]
Yan, Yunjun [1 ]
Yan, Jinyong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Key Lab Mol Biophys, Minist Educ, 1037 Luoyu Rd, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
KINASE;
D O I
10.1093/bioinformatics/btae319
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Predicting protein-ligand binding affinity is crucial in new drug discovery and development. However, most existing models rely on acquiring 3D structures of elusive proteins. Combining amino acid sequences with ligand sequences and better highlighting active sites are also significant challenges.Results We propose an innovative neural network model called DEAttentionDTA, based on dynamic word embeddings and a self-attention mechanism, for predicting protein-ligand binding affinity. DEAttentionDTA takes the 1D sequence information of proteins as input, including the global sequence features of amino acids, local features of the active pocket site, and linear representation information of the ligand molecule in the SMILE format. These three linear sequences are fed into a dynamic word-embedding layer based on a 1D convolutional neural network for embedding encoding and are correlated through a self-attention mechanism. The output affinity prediction values are generated using a linear layer. We compared DEAttentionDTA with various mainstream tools and achieved significantly superior results on the same dataset. We then assessed the performance of this model in the p38 protein family.Availability and implementation The resource codes are available at https://github.com/whatamazing1/DEAttentionDTA.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Protein-ligand binding affinity prediction model based on graph attention network
    Yuan, Hong
    Huang, Jing
    Li, Jin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 9148 - 9162
  • [2] Protein-ligand binding affinity prediction with edge awareness and supervised attention
    Gu, Yuliang
    Zhang, Xiangzhou
    Xu, Anqi
    Chen, Weiqi
    Liu, Kang
    Wu, Lijuan
    Mo, Shenglong
    Hu, Yong
    Liu, Mei
    Luo, Qichao
    ISCIENCE, 2023, 26 (01)
  • [3] Protein-Ligand Binding Affinity Prediction Based on Deep Learning
    Lu, Yaoyao
    Liu, Junkai
    Jiang, Tengsheng
    Guan, Shixuan
    Wu, Hongjie
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2022, PT II, 2022, 13394 : 310 - 316
  • [4] Surface-based multimodal protein-ligand binding affinity prediction
    Xu, Shiyu
    Shen, Lian
    Zhang, Menglong
    Jiang, Changzhi
    Zhang, Xinyi
    Xu, Yanni
    Liu, Juan
    Liu, Xiangrong
    BIOINFORMATICS, 2024, 40 (07)
  • [5] Protein-ligand binding affinity prediction based on profiles of intermolecular contacts
    Wang, Debby D.
    Chan, Moon-Tong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 1088 - 1096
  • [6] DeepAtom: A Framework for Protein-Ligand Binding Affinity Prediction
    Li, Yanjun
    Rezaei, Mohammad A.
    Li, Chenglong
    Li, Xiaolin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 303 - 310
  • [7] ResBiGAAT: Residual Bi-GRU with attention for protein-ligand binding affinity prediction
    Abdelkader, Gelany Aly
    Njimbouom, Soualihou Ngnamsie
    Oh, Tae-Jin
    Kim, Jeong-Dong
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2023, 107
  • [8] Prediction of protein-ligand binding affinity with deep learning
    Wang, Yuxiao
    Jiao, Qihong
    Wang, Jingxuan
    Cai, Xiaojun
    Zhao, Wei
    Cui, Xuefeng
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 5796 - 5806
  • [9] Binding affinity prediction for protein-ligand complex using deep attention mechanism based on intermolecular interactions
    Seo, Sangmin
    Choi, Jonghwan
    Park, Sanghyun
    Ahn, Jaegyoon
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [10] Ensembling methods for protein-ligand binding affinity prediction
    Cader, Jiffriya Mohamed Abdul
    Newton, M. A. Hakim
    Rahman, Julia
    Cader, Akmal Jahan Mohamed Abdul
    Sattar, Abdul
    SCIENTIFIC REPORTS, 2024, 14 (01):