NONLINEAR IMPULSIVE (ρk, ψk)-HILFER FRACTIONAL PANTOGRAPH INTEGRO-DIFFERENTIAL EQUATIONS UNDER NONLOCAL INTEGRAL BOUNDARY CONDITIONS

被引:0
作者
Kaewsuwan, Marisa [1 ]
Thaiprayoon, Chatthai [2 ]
Aphithana, Aphirak [1 ]
Kongson, Jutarat [2 ]
Sae-dan, Weerapan [3 ]
Sudsutad, Weerawat [1 ]
机构
[1] Ramkhamhang Univ, Fac Sci, Dept Stat, Theoret & Appl Data Integrat Innovat Grp, Bangkok 10240, Thailand
[2] Burapha Univ, Fac Sci, Dept Math, Res Grp Theoret & Computat Appl Sci, Chon Buri 20131, Thailand
[3] Ramkhamhang Univ, Fac Engn, Dept Comp Engn, Bangkok 10240, Thailand
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2024年 / 2024卷
关键词
(k; psi)-Hilfer fractional derivative; Impulsive conditions; Nonlocal integral boundary condi- tions; Ulam's stability; STABILITY; EXISTENCE; RESPECT;
D O I
10.23952/jnfa.2024.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the existence and uniqueness of solutions for a class of nonlinear impulsive fractional pantograph integro-differential equations with multi -point integral boundary conditions in the context of the (rho(k), psi(k))-Hilfer fractional operator. We transform our problem into an equivalent integral equation, and the uniqueness result is proved by applying Banach's fixed-point theorem. In addition, some types of Ulam's stability results are demonstrated and numerical examples are designed to illustrate the applicability of our theoretical results.
引用
收藏
页数:29
相关论文
共 34 条
[1]   On the initial value problems for the Caputo-Fabrizio impulsive fractional differential equations [J].
Abbas, Mohamed, I .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (05)
[2]   A Caputo fractional derivative of a function with respect to another function [J].
Almeida, Ricardo .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 44 :460-481
[4]  
Caputo M., 2015, PROG FRACT DIFFER AP, V1, P73
[5]  
Diaz R., 2004, Divulg. Math, V15, P179
[6]  
Dorrego G.A., 2015, APPL MATH SCI, V9, P481, DOI [10.12988/ams.2015.411893, DOI 10.12988/AMS.2015.411893]
[7]   Existence and uniqueness for a problem involving Hilfer fractional derivative [J].
Furati, K. M. ;
Kassim, M. D. ;
Tatar, N. E- .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (06) :1616-1626
[8]  
Hilfer R., 2000, Applications of fractional calculus in physics
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]  
Iserles A, 1994, J INTEGRAL EQUAT, V6, P213, DOI DOI 10.1216/JIEA/1181075805