A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma

被引:6
作者
Wang, Jia-Ling [1 ,2 ]
Tang, Lian-Sha [1 ,2 ]
Zhong, Xia [3 ]
Wang, Yi [2 ]
Feng, Yu-Jie [2 ]
Zhang, Yun [3 ]
Liu, Ji-Yan [1 ]
机构
[1] Sichuan Univ, West China Hosp, Canc Ctr, Dept Biotherapy, Chengdu, Peoples R China
[2] Sichuan Univ, West China Sch Med, Chengdu, Peoples R China
[3] Sichuan Univ, West China Hosp, Dept Radiol, Chengdu, Peoples R China
关键词
neoadjuvant immunotherapy; esophageal squamous cell cancer; major pathological response; radiomics; computed tomography; BIOMARKERS; EXPRESSION;
D O I
10.3389/fimmu.2024.1405146
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background Patients with resectable esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant immunotherapy (NIT) display variable treatment responses. The purpose of this study is to establish and validate a radiomics based on enhanced computed tomography (CT) and combined with clinical data to predict the major pathological response to NIT in ESCC patients.Methods This retrospective study included 82 ESCC patients who were randomly divided into the training group (n = 57) and the validation group (n = 25). Radiomic features were derived from the tumor region in enhanced CT images obtained before treatment. After feature reduction and screening, radiomics was established. Logistic regression analysis was conducted to select clinical variables. The predictive model integrating radiomics and clinical data was constructed and presented as a nomogram. Area under curve (AUC) was applied to evaluate the predictive ability of the models, and decision curve analysis (DCA) and calibration curves were performed to test the application of the models.Results One clinical data (radiotherapy) and 10 radiomic features were identified and applied for the predictive model. The radiomics integrated with clinical data could achieve excellent predictive performance, with AUC values of 0.93 (95% CI 0.87-0.99) and 0.85 (95% CI 0.69-1.00) in the training group and the validation group, respectively. DCA and calibration curves demonstrated a good clinical feasibility and utility of this model.Conclusion Enhanced CT image-based radiomics could predict the response of ESCC patients to NIT with high accuracy and robustness. The developed predictive model offers a valuable tool for assessing treatment efficacy prior to initiating therapy, thus providing individualized treatment regimens for patients.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Neoadjuvant atezolizumab for resectable non-small cell lung cancer: an open-label, single-arm phase II trial [J].
Chaft, Jamie E. ;
Oezkan, Filiz ;
Kris, Mark G. ;
Bunn, Paul A. ;
Wistuba, Ignacio I. ;
Kwiatkowski, David J. ;
Owen, Dwight H. ;
Tang, Yan ;
Johnson, Bruce E. ;
Lee, Jay M. ;
Lozanski, Gerard ;
Pietrzak, Maciej ;
Seweryn, Michal ;
Byun, Woo Yul ;
Schulze, Katja ;
Nicholas, Alan ;
Johnson, Ann ;
Grindheim, Jessica ;
Hilz, Stephanie ;
Shames, David S. ;
Rivard, Chris ;
Toloza, Eric ;
Haura, Eric B. ;
McNamee, Ciaran J. ;
Patterson, G. Alexander ;
Waqar, Saiama N. ;
Rusch, Valerie W. ;
Carbone, David P. .
NATURE MEDICINE, 2022, 28 (10) :2155-+
[2]   Neoadjuvant sintilimab and chemotherapy in patients with potentially resectable esophageal squamous cell carcinoma (KEEP-G 03): an open-label, single-arm, phase 2 trial [J].
Chen, Xiaofeng ;
Xu, Xiang ;
Wang, Danping ;
Liu, Jinyuan ;
Sun, Jing ;
Lu, Mingjie ;
Wang, Rui ;
Hui, Bingqing ;
Li, Xiaofei ;
Zhou, Chenchen ;
Wang, Min ;
Qiu, Tianzhu ;
Cui, Shiyun ;
Sun, Nana ;
Li, Yang ;
Wang, Fufeng ;
Liu, Cuicui ;
Shao, Yang ;
Luo, Jinhua ;
Gu, Yanhong .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2023, 11 (02)
[3]   Pseudoprogression and Immune-Related Response in Solid Tumors [J].
Chiou, Victoria L. ;
Burotto, Mauricio .
JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (31) :3541-+
[4]   Model integrating CT-based radiomics and genomics for survival prediction in esophageal cancer patients receiving definitive chemoradiotherapy [J].
Cui, Jinfeng ;
Li, Li ;
Liu, Ning ;
Hou, Wenhong ;
Dong, Yinjun ;
Yang, Fengchang ;
Zhu, Shouhui ;
Li, Jun ;
Yuan, Shuanghu .
BIOMARKER RESEARCH, 2023, 11 (01)
[5]   Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma [J].
Cui, Yongping ;
Chen, Hongyan ;
Xi, Ruibin ;
Cui, Heyang ;
Zhao, Yahui ;
Xu, Enwei ;
Yan, Ting ;
Lu, Xiaomei ;
Huang, Furong ;
Kong, Pengzhou ;
Li, Yang ;
Zhu, Xiaolin ;
Wang, Jiawei ;
Zhu, Wenjie ;
Wang, Jie ;
Ma, Yanchun ;
Zhou, Yong ;
Guo, Shiping ;
Zhang, Ling ;
Liu, Yiqian ;
Wang, Bin ;
Xi, Yanfeng ;
Sun, Ruifang ;
Yu, Xiao ;
Zhai, Yuanfang ;
Wang, Fang ;
Yang, Jian ;
Yang, Bin ;
Cheng, Caixia ;
Liu, Jing ;
Song, Bin ;
Li, Hongyi ;
Wang, Yi ;
Zhang, Yingchun ;
Cheng, Xiaolong ;
Zhan, Qimin ;
Li, Yanhong ;
Liu, Zhihua .
CELL RESEARCH, 2020, 30 (10) :902-913
[6]   Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice [J].
Deng, Liufu ;
Liang, Hua ;
Burnette, Byron ;
Beckett, Michael ;
Darga, Thomas ;
Weichselbaum, Ralph R. ;
Fu, Yang-Xin .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (02) :687-695
[7]   Emerging and Evolving Concepts in Cancer Immunotherapy Imaging [J].
Dercle, Laurent ;
Sun, Shawn ;
Seban, Romain-David ;
Mekki, Ahmed ;
Sun, Roger ;
Tselikas, Lambros ;
Hans, Sophie ;
Bernard-Tessier, Alice ;
Bouvier, Fadila Mihoubi ;
Aide, Nicolas ;
Vercellino, Laetitia ;
Rivas, Alexia ;
Girard, Antoine ;
Mokrane, Fatima-Zohra ;
Manson, Guillaume ;
Houot, Roch ;
Lopci, Egesta ;
Yeh, Randy ;
Ammari, Samy ;
Schwartz, Lawrence H. .
RADIOLOGY, 2023, 306 (01) :32-46
[8]   Neoadjuvant PD-1 Blockade in Resectable Lung Cancer [J].
Forde, P. M. ;
Chaft, J. E. ;
Smith, K. N. ;
Anagnostou, V. ;
Cottrell, T. R. ;
Hellmann, M. D. ;
Zahurak, M. ;
Yang, S. C. ;
Jones, D. R. ;
Broderick, S. ;
Battafarano, R. J. ;
Velez, M. J. ;
Rekhtman, N. ;
Olah, Z. ;
Naidoo, J. ;
Marrone, K. A. ;
Verde, F. ;
Guo, H. ;
Zhang, J. ;
Caushi, J. X. ;
Chan, H. Y. ;
Sidhom, J. -W. ;
Scharpf, R. B. ;
White, J. ;
Gabrielson, E. ;
Wang, H. ;
Rosner, G. L. ;
Rusch, V. ;
Wolchok, J. D. ;
Merghoub, T. ;
Taube, J. M. ;
Velculescu, V. E. ;
Topalian, S. L. ;
Brahmer, J. R. ;
Pardoll, D. M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (21) :1976-1986
[9]   Emerging evidence for adapting radiotherapy to immunotherapy [J].
Galluzzi, Lorenzo ;
Aryankalayil, Molykutty J. ;
Coleman, C. Norman ;
Formenti, Silvia C. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2023, 20 (08) :543-557
[10]   Non-Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data-Methods and Preliminary Results [J].
Gevaert, Olivier ;
Xu, Jiajing ;
Hoang, Chuong D. ;
Leung, Ann N. ;
Xu, Yue ;
Quon, Andrew ;
Rubin, Daniel L. ;
Napel, Sandy ;
Plevritis, Sylvia K. .
RADIOLOGY, 2012, 264 (02) :387-396