On the extremal graphs in generalized Turan problems

被引:1
|
作者
Gerbner, Daniel [1 ]
机构
[1] Alfred Reny Inst Math, Budapest, Hungary
关键词
Generalized Tur & aacute; n; COPIES;
D O I
10.1016/j.disc.2024.114021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two graphs H and F , the generalized Tur & aacute;n number ex ( n , H , F ) is the largest number of copies of H in an n -vertex F -free graph. For every graph F , we present an extremal graph for a generalized Tur & aacute;n problem. More precisely, we present a graph H not containing F and for sufficiently large n we present an F -free n -vertex graph G that contains exactly ex ( n , H , F ) copies of H . (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY -NC license (http://creativecommons .org /licenses /by-nc /4 .0/).
引用
收藏
页数:8
相关论文
共 33 条
  • [1] Generalized Turan Problems for Small Graphs
    Gerbner, Daniel
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (02) : 549 - 572
  • [2] Generalized Turan Problems for Complete Bipartite Graphs
    Gerbner, Daniel
    Patkos, Balazs
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [3] Generalized rainbow Turan problems
    Gerbner, Daniel
    Methuku, Abhishek
    Meszaros, Tamas
    Palmer, Cory
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02)
  • [4] Generalized Turan problems for even cycles
    Gerbner, Daniel
    Gyori, Ervin
    Methuku, Abhishek
    Vizer, Mate
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 169 - 213
  • [5] Random polynomial graphs for random Turan problems
    Spiro, Sam
    JOURNAL OF GRAPH THEORY, 2024, 105 (02) : 192 - 208
  • [6] Some exact results for generalized Turan problems
    Gerbner, Daniel
    Palmer, Cory
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 103
  • [7] A Non-aligning Variant of Generalized Turan Problems
    Gerbner, Daniel
    ANNALS OF COMBINATORICS, 2024, 28 (02) : 351 - 366
  • [8] On Turan-good graphs
    Gerbner, Daniel
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [9] Generalized Planar Turan Numbers
    Gyori, Ervin
    Paulos, Addisu
    Salia, Nika
    Tompkins, Casey
    Zamora, Oscar
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04)
  • [10] Generalized regular Turan numbers
    Gerbner, Daniel
    Karim, Hilal hama
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 90 : 326 - 340