AN IMPLICIT FUNCTION THEOREM FOR THE STREAM CALCULUS

被引:0
作者
Boreale, Michele [1 ]
Collodi, Luisa [1 ]
Gorla, Daniele [2 ]
机构
[1] Univ Firenze, Florence, Italy
[2] Sapienza Univ Roma, Rome, Italy
关键词
All Open Access; Gold; Green;
D O I
10.46298/LMCS-20(2:15)2024
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the context of the stream calculus, we present an Implicit Function Theorem (IFT) for polynomial systems, and discuss its relations with the classical IFT from calculus. In particular, we demonstrate the advantages of the stream IFT from a computational point of view, and provide a few example applications where its use turns out to be valuable.
引用
收藏
页码:1 / 15
页数:20
相关论文
共 30 条
[1]  
Basold Henning, 2014, LNCS, V8464, P124
[2]   The Calculus of Signal Flow Diagrams I: Linear relations on streams [J].
Bonchi, Filippo ;
Sobocinski, Pawel ;
Zanasi, Fabio .
INFORMATION AND COMPUTATION, 2017, 252 :2-29
[3]  
Bonchi F, 2015, ACM SIGPLAN NOTICES, V50, P515, DOI [10.1145/2775051.2676993, 10.1145/2676726.2676993]
[4]   Complete algorithms for algebraic strongest postconditions and weakest preconditions in polynomial ODES [J].
Boreale, Michele .
SCIENCE OF COMPUTER PROGRAMMING, 2020, 193
[5]   ALGEBRA, COALGEBRA, AND MINIMIZATION IN POLYNOMIAL DIFFERENTIAL EQUATIONS [J].
Boreale, Michele .
LOGICAL METHODS IN COMPUTER SCIENCE, 2019, 15 (01) :14:1-14:27
[6]  
Boreale Michele, 2021, LEIBNIZ INT P INFORM, V203
[7]  
BOSTAN A., 2018, Algorithmes Efficaces en Calcul Formel
[8]  
Cox D., 2015, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
[9]  
Flajolet Philippe, 2001, Research Report RR-4103
[10]   A numerical methodology for the Painleve equations [J].
Fornberg, Bengt ;
Weideman, J. A. C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (15) :5957-5973