Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities

被引:0
|
作者
Nayab, Iqra [1 ]
Mubeen, Shahid [1 ]
Ali, Rana Safdar [2 ]
Zahoor, Faisal [2 ]
Awadalla, Muath [3 ]
Elamin, Abd Elmotaleb A. M. A. [4 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
[2] Univ Lahore, Dept Math, Lahore, Pakistan
[3] King Faisal Univ, Coll Sci, Dept Math & Stat, Hafuf 31982, Al Ahsa, Saudi Arabia
[4] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanity, Dept Math, Sulail 11942, Al Kharj, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 07期
关键词
fuzzy fractional integral; fuzzy interval-valued function; preinvex function; fuzzy convexity; Hermite-Hadamard inequality; HADAMARD;
D O I
10.3934/math.2024860
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we implemented the idea of a fuzzy interval-valued function with the well-known generalized fuzzy fractional operators, associated with different types of convexities and preinvexities. We developed the Prabhakar fuzzy fractional operators using the fuzzy interval-valued function. We presented the novel extensions of Hermite-Hadamard fuzzy-type and trapezoidal fuzzytype inequalities, based on the h-Godunova-Levin convex and h-Godunova preinvex fuzzy intervalvalued functions.
引用
收藏
页码:17696 / 17715
页数:20
相关论文
共 50 条
  • [31] D New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation
    Khan, Muhammad Bilal
    Mohammed, Pshtiwan Othman
    Noor, Muhammad Aslam
    Alsharif, Abdullah M.
    Noor, Khalida Inayat
    AIMS MATHEMATICS, 2021, 6 (10): : 10964 - 10988
  • [32] Discrete Fractional Inequalities Pertaining a Fractional Sum Operator with Some Applications on Time Scales
    Khan, Zareen A.
    Shah, Kamal
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [33] Geometric Features of a Multivalent Function Pertaining to Fractional Operators
    Priya, K. Divya
    Thilagavathi, K.
    CONTEMPORARY MATHEMATICS, 2024, 5 (04): : 5434 - 5453
  • [34] Weighted norm inequalities for fractional operators
    Auscher, Pascal
    Maria Martell, Jose
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (04) : 1845 - 1869
  • [35] A new class of fuzzy fractional differential inclusions driven by variational inequalities
    Wu, Zeng-bao
    Wang, Xing
    Huang, Nan-jing
    Wang, Tian-yin
    Wang, Hua-min
    FUZZY SETS AND SYSTEMS, 2021, 419 : 99 - 121
  • [36] Flows and functional inequalities for fractional operators
    Dolbeault, Jean
    Zhang, An
    APPLICABLE ANALYSIS, 2017, 96 (09) : 1547 - 1560
  • [37] WEIGHTED INEQUALITIES FOR GENERALIZED FRACTIONAL OPERATORS
    Silvina Riveros, Maria
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2008, 49 (02): : 29 - 38
  • [38] Fuzzy fractional-order model of the novel coronavirus
    Ahmad, S.
    Ullah, A.
    Shah, K.
    Salahshour, S.
    Ahmadian, A.
    Ciano, T.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [39] On a novel fuzzy fractional retarded delay epidemic model
    Dhandapani, Prasantha Bharathi
    Thippan, Jayakumar
    Baleanu, Dumitru
    Sivakumar, Vinoth
    AIMS MATHEMATICS, 2022, 7 (06): : 10122 - 10142
  • [40] Fuzzy fractional-order model of the novel coronavirus
    S. Ahmad
    A. Ullah
    K. Shah
    S. Salahshour
    A. Ahmadian
    T. Ciano
    Advances in Difference Equations, 2020