Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities

被引:0
|
作者
Nayab, Iqra [1 ]
Mubeen, Shahid [1 ]
Ali, Rana Safdar [2 ]
Zahoor, Faisal [2 ]
Awadalla, Muath [3 ]
Elamin, Abd Elmotaleb A. M. A. [4 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
[2] Univ Lahore, Dept Math, Lahore, Pakistan
[3] King Faisal Univ, Coll Sci, Dept Math & Stat, Hafuf 31982, Al Ahsa, Saudi Arabia
[4] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanity, Dept Math, Sulail 11942, Al Kharj, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 07期
关键词
fuzzy fractional integral; fuzzy interval-valued function; preinvex function; fuzzy convexity; Hermite-Hadamard inequality; HADAMARD;
D O I
10.3934/math.2024860
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we implemented the idea of a fuzzy interval-valued function with the well-known generalized fuzzy fractional operators, associated with different types of convexities and preinvexities. We developed the Prabhakar fuzzy fractional operators using the fuzzy interval-valued function. We presented the novel extensions of Hermite-Hadamard fuzzy-type and trapezoidal fuzzytype inequalities, based on the h-Godunova-Levin convex and h-Godunova preinvex fuzzy intervalvalued functions.
引用
收藏
页码:17696 / 17715
页数:20
相关论文
共 50 条
  • [21] Novel Evaluation of Fuzzy Fractional Helmholtz Equations
    Alesemi, Meshari
    Iqbal, Naveed
    Wyal, Noorolhuda
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [22] Generalized fractional evolution equations driven by fuzzy variational inequalities
    Zeng, Shengda
    Cen, Jinxia
    Van Thien Nguyen
    FUZZY SETS AND SYSTEMS, 2022, 429 : 60 - 73
  • [23] Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator
    Alsalami, Omar Mutab
    Sahoo, Soubhagya Kumar
    Tariq, Muhammad
    Shaikh, Asif Ali
    Cesarano, Clemente
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (08):
  • [24] Novel Numerical Investigations of Fuzzy Cauchy Reaction-Diffusion Models via Generalized Fuzzy Fractional Derivative Operators
    Alqudah, Manar A.
    Ashraf, Rehana
    Rashid, Saima
    Singh, Jagdev
    Hammouch, Zakia
    Abdeljawad, Thabet
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [25] NOVEL GENERALIZATIONS FOR GRUSS TYPE INEQUALITIES PERTAINING TO THE CONSTANT PROPORTIONAL FRACTIONAL INTEGRALS
    Celik, Baris
    Set, Erhan
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2023, 22 (02) : 275 - 291
  • [26] Some new inequalities for generalized convex functions pertaining generalized fractional integral operators and their applications
    Kashuri, A.
    Ali, M. A.
    Abbas, M.
    Toseef, M.
    JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2021, 17 (01) : 37 - 64
  • [27] Pre-Invexity and Fuzzy Fractional Integral Inequalities via Fuzzy Up and Down Relation
    Khan, Muhammad Bilal
    Macias-Diaz, Jorge E.
    Jafari, Saeid
    Maash, Abdulwadoud A.
    Soliman, Mohamed S.
    SYMMETRY-BASEL, 2023, 15 (04):
  • [28] Fuzzy Fractional Quadratic Regulator Problem Under Granular Fuzzy Fractional Derivatives
    Najariyan, Marzieh
    Zhao, Yi
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (04) : 2273 - 2288
  • [29] On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings
    Khan, Muhammad Bilal
    Othman, Hakeem A.
    Santos-Garcia, Gustavo
    Saeed, Tareq
    Soliman, Mohamed S.
    CHAOS SOLITONS & FRACTALS, 2023, 169
  • [30] Numerical solutions of fuzzy equal width models via generalized fuzzy fractional derivative operators
    Ashraf, Rehana
    Rashid, Saima
    Jarad, Fahd
    Althobaiti, Ali
    AIMS MATHEMATICS, 2022, 7 (02): : 2695 - 2728